Skip to main content

fully connected neural network with four layers

Project description

----------------------------------------------------------------
Fully connected four-layer neural network
Solves a huge number of cases, classification and regression
Fast, robust and very simple to use, this is the way
(As long as python exists this project will exist)
----------------------------------------------------------------


#Manual = https://www.mediafire.com/file/xygt3o9zf7iw3id/Manual_Tupa123.pdf

#Quick Guide = https://www.mediafire.com/file/a0db7fb3lfsxvaj/Guia_Rapido.pdf

#Excel example data = https://www.mediafire.com/file/o2nzsmnvweh8w1a/ALETAS.xlsx
#Excel example (old version) = https://www.mediafire.com/file/0xmx5quakd21txu/ALETAS.xls



#-----FILE TO MACHINE LEARNING-----------------------------

import tupa123 as tu

X = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=300)
y = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=300)

model = tu.nnet4(nn1c=5, nn2c=7, nn3c=5, nn4c=2, namenet='tupa01')
model.Fit_ADAM(X, y)
model.Plotconv()

input('end')

#-----FILE TO APPLICATION OF MACHINE LEARNING--------------

import tupa123 as tu

model = tu.nnet4(nn1c=5, nn2c=7, nn3c=5, nn4c=2, namenet='tupa01')
X_new = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=1000)
y_resposta = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=1000)
y_pred = model.Predict(X_new)

tu.Statistics(y_pred, y_resposta)
tu.PlotCorrelation(y_pred, y_resposta)
tu.PlotComparative(y_pred, y_resposta)
input('end')

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tupa123-1.3.11.tar.gz (11.4 kB view details)

Uploaded Source

File details

Details for the file tupa123-1.3.11.tar.gz.

File metadata

  • Download URL: tupa123-1.3.11.tar.gz
  • Upload date:
  • Size: 11.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for tupa123-1.3.11.tar.gz
Algorithm Hash digest
SHA256 62493375a93e51b9a367a45fbd9a7e826e4aa87ae93c0064671e380758d6cfdd
MD5 5357c7f9f0f4a21fbc806adcc0f05569
BLAKE2b-256 175c996f089390e4f681f35f698233645f5db95b37e3babaadb682c5da0c1530

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page