Skip to main content

fully connected neural network with four layers

Project description

----------------------------------------------------------------
Fully connected four-layer neural network
Solves a huge number of cases, classification and regression
Fast, robust and very simple to use, this is the way
(As long as python exists this project will exist)
----------------------------------------------------------------


#Manual = https://www.mediafire.com/file/xygt3o9zf7iw3id/Manual_Tupa123.pdf

#Quick Guide = https://www.mediafire.com/file/a0db7fb3lfsxvaj/Guia_Rapido.pdf

#Excel example data = https://www.mediafire.com/file/o2nzsmnvweh8w1a/ALETAS.xlsx
#Excel example (old version) = https://www.mediafire.com/file/0xmx5quakd21txu/ALETAS.xls



#-----FILE TO MACHINE LEARNING-----------------------------

import tupa123 as tu

X = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=300)
y = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=300)

model = tu.nnet4(nn1c=5, nn2c=7, nn3c=5, nn4c=2, namenet='tupa01')
model.Fit_ADAM(X, y)
model.Plotconv()

input('end')

#-----FILE TO APPLICATION OF MACHINE LEARNING--------------

import tupa123 as tu

model = tu.nnet4(nn1c=5, nn2c=7, nn3c=5, nn4c=2, namenet='tupa01')
X_new = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=1000)
y_resposta = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=1000)
y_pred = model.Predict(X_new)

tu.Statistics(y_pred, y_resposta)
tu.PlotCorrelation(y_pred, y_resposta)
tu.PlotComparative(y_pred, y_resposta)
input('end')

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tupa123-1.3.15.tar.gz (12.0 kB view details)

Uploaded Source

File details

Details for the file tupa123-1.3.15.tar.gz.

File metadata

  • Download URL: tupa123-1.3.15.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for tupa123-1.3.15.tar.gz
Algorithm Hash digest
SHA256 272553e7e0ee5ae59aca3d15c5eadd45b4dd327c8c9181b8248aca18008e76a1
MD5 6dccdc82ba64b94c999f26dee9b3ee55
BLAKE2b-256 9dcf2bd9292ca6d23c4f9845e0f048403b7bd236bee60b4709ccde76b55db685

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page