Skip to main content

fully connected neural network with four layers

Project description

----------------------------------------------------------------
Fully connected four-layer neural network
Solves a huge number of cases, classification and regression
Fast, robust and very simple to use, this is the way
(As long as python exists this project will exist)
----------------------------------------------------------------


#Manual = https://www.mediafire.com/file/xygt3o9zf7iw3id/Manual_Tupa123.pdf

#Quick Guide = https://www.mediafire.com/file/a0db7fb3lfsxvaj/Guia_Rapido.pdf

#Excel example data = https://www.mediafire.com/file/o2nzsmnvweh8w1a/ALETAS.xlsx
#Excel example (old version) = https://www.mediafire.com/file/0xmx5quakd21txu/ALETAS.xls



#-----FILE TO MACHINE LEARNING-----------------------------

import tupa123 as tu

X = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=300)
y = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=300)

model = tu.nnet4(nn1c=5, nn2c=7, nn3c=5, nn4c=2, namenet='tupa01')
model.Fit_ADAM(X, y)
model.Plotconv()

input('end')

#-----FILE TO APPLICATION OF MACHINE LEARNING--------------

import tupa123 as tu

model = tu.nnet4(nn1c=5, nn2c=7, nn3c=5, nn4c=2, namenet='tupa01')
X_new = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=1000)
y_resposta = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=1000)
y_pred = model.Predict(X_new)

tu.Statistics(y_pred, y_resposta)
tu.PlotCorrelation(y_pred, y_resposta)
tu.PlotComparative(y_pred, y_resposta)
input('end')

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tupa123-1.4.2.tar.gz (12.2 kB view details)

Uploaded Source

File details

Details for the file tupa123-1.4.2.tar.gz.

File metadata

  • Download URL: tupa123-1.4.2.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for tupa123-1.4.2.tar.gz
Algorithm Hash digest
SHA256 94b3a20c2036ef06bdeadd542296d5edace25a5bb84121d017fa60f9960bc65a
MD5 6f4cada7df449fb2b6a5900e8c213d0a
BLAKE2b-256 6034870d1091995ec962a71cf5df73de7b156d0dc2f04366dbfc642e62ac039d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page