JSON (de)serialization extensions
Project description
TurboBroccoli 🥦
JSON (de)serialization extensions, originally aimed at numpy
and tensorflow
objects, but now supporting a wide range of objects.
Installation
pip install turbo-broccoli
Usage
To/from string
import numpy as np
import turbo_broccoli as tb
obj = {"an_array": np.array([[1, 2], [3, 4]], dtype="float32")}
tb.to_json(obj)
produces the following string (modulo indentation and the value of
$.an_array.data.data
):
{
"an_array": {
"__type__": "numpy.ndarray",
"__version__": 5,
"data": {
"__type__": "bytes",
"__version__": 3,
"data": "QAAAAAAAAAB7ImRhd..."
}
}
}
For deserialization, simply use
tb.from_json(json_string)
To/from file
Simply replace
turbo_broccoli.to_json
and
turbo_broccoli.from_json
with
turbo_broccoli.save_json
and
turbo_broccoli.load_json
:
import numpy as np
import turbo_broccoli as tb
obj = {"an_array": np.array([[1, 2], [3, 4]], dtype="float32")}
tb.save_json(obj, "foo/bar/foobar.json")
...
obj = tb.load_json("foo/bar/foobar.json")
It is also possible to read/write compressed (with zlib) JSON files:
tb.save_json(obj, "foo/bar/foobar.json.gz")
...
obj = tb.load_json("foo/bar/foobar.json.gz")
Contexts
The behaviour of
turbo_broccoli.to_json
and
turbo_broccoli.from_json
can be tweaked by using
contexts.
For example, to set a encryption/decryption key for secret
types:
import nacl.secret
import nacl.utils
import turbo_broccoli as tb
key = nacl.utils.random(nacl.secret.SecretBox.KEY_SIZE)
ctx = tb.Context(nacl_shared_key=key)
obj = {"user": "alice", "password": tb.SecretStr("dolphin")}
doc = tb.to_json(obj, ctx)
...
obj = tb.from_json(doc, ctx)
The behaviour of
turbo_broccoli.save_json
and
turbo_broccoli.load_json
can be tweaked in a similar manner. For convenience, the argument of the
context can be passed directly to the method instead of creating a context
object manually:
import nacl.secret
import nacl.utils
import turbo_broccoli as tb
key = nacl.utils.random(nacl.secret.SecretBox.KEY_SIZE)
obj = {"user": "alice", "password": tb.SecretStr("dolphin")}
tb.save_json(obj, "foo/bar/foobar.json", nacl_shared_key=key)
See the documentation.
Guarded blocks
A
turbo_broccoli.GuardedBlockHandler
"guards" a block of code, meaning it prevents it from being executed if it has
been in the past. Check out the
documentation
for some examples.
Guarded-parallel executors
A mix of
joblib.Parallel
and
turbo_broccoli.GuardedBlockHandler
:
a
turbo_broccoli.Parallel
object can be used to execute jobs in parallel, but those whose results have
already been obtained in the past are skipped. See the
documentation
for some examples.
Custom encoders/decoders
You can register you own custom encoders and decoders using
turbo_broccoli.register_encoder
and
turbo_broccoli.register_decoder
:
import turbo_broccoli as tb
class MyClass:
a: int
b: np.ndarray
c: np.ndarray
def __init__(self, a: int, b: np.ndarray):
self.a, self.b = a, b
self.c = a + b
def encoder_c(obj: MyClass, ctx: tb.Context) -> dict:
# If you register a decoder, you must include the key "__type__" and it
# must have value "user.<name_of_type>"
# ↓
return {"__type__": "user.MyClass", "a": obj.a, "b": obj.b}
def decoder_c(obj: dict, ctx: tb.Context) -> MyClass:
return MyClass(obj["a"], obj["b"])
tb.register_encoder(encoder_c, "MyClass")
tb.register_decoder(decoder_c, "MyClass")
An encoder (for MyClass
) is a function that takes two arguments: an object of
type MyClass
and a
turbo_broccoli.Context
,
and returns a dict
. That dict must contain objects that can be further
serialized using TurboBroccoli (which includes all supported
types
and any other type for which you registered an encoder). The return dict needs
not be flat.
If you register a decoder for MyClass
(as in the example above), the dict
must contain the key/value "__type__": "user.MyClass"
.
A decoder (for MyClass
) is a function that takes two arguments: a dict and a
turbo_broccoli.Context
,
and returns an object of type MyClass
. The dict's values have already been
deserialized.
Artifacts
If an object inside obj
is too large to be embedded inside the JSON file
(e.g. a large numpy array), then an artifact file is created:
import numpy as np
import turbo_broccoli as tb
obj = {"an_array": np.random.rand(1000, 1000)}
tb.save_json(obj, "foo/bar/foobar.json")
produces the JSON file
{
"an_array": {
"__type__": "numpy.ndarray",
"__version__": 5,
"data": {
"__type__": "bytes",
"__version__": 3,
"id": "1e6dff28-5e26-44df-9e7a-75bc726ce9aa"
}
}
}
and a file foo/bar/foobar.1e6dff28-5e26-44df-9e7a-75bc726ce9aa.tb
containing
the array data. The artifact directory can be explicitely specified by setting
it in the serialization
context
or by setting the TB_ARTIFACT_PATH
environment variable (see below.). The
code for loading the JSON file does not change:
obj = tb.load_json("foo/bar/foobar.json")
If using
turbo_broccoli.to_json
,
since there is no output file path specified, the artifacts are storied in a
temporary directory instead:
import numpy as np
import turbo_broccoli as tb
obj = {"an_array": np.random.rand(1000, 1000)}
doc = tb.to_json(obj)
# An artifact has been created somewhere in e.g. /tmp
Since no information about this directory is stored in the output JSON string,
it is not possible to load doc
using
turbo_broccoli.from_json
.
If deserialization is necessary, instantiate a context:
import numpy as np
import turbo_broccoli as tb
ctx = tb.Context()
obj = {"an_array": np.random.rand(1000, 1000)}
doc = tb.to_json(obj, ctx)
# An artifact has been created in ctx.artifact_path
...
obj = tb.from_json(doc, ctx)
Supported types
Basic types
-
Collections:
collections.deque
,collections.namedtuple
-
Dataclasses: serialization is straightforward:
@dataclass class C: a: int b: str doc = tb.to_json({"c": C(a=1, b="Hello")})
For deserialization, first register the class:
ctx = tb.Context(dataclass_types=[C]) tb.from_json(doc, ctx)
-
Non JSON-able dicts, i.e. dicts whose keys are not all
str
,int
,float
,bool
orNone
Generic objects
Serialization only. A generic object is an object that
has the __turbo_broccoli__
attribute. This attribute is expected to be a list
of attributes whose values will be serialized. For example,
class C:
__turbo_broccoli__ = ["a", "b"]
a: int
b: int
c: int
x = C()
x.a, x.b, x.c = 42, 43, 44
tb.to_json(x)
produces the following string:
{"a": 42,"b": 43}
Registered attributes can of course have any type supported by TurboBroccoli,
such as numpy arrays. Registered attributes can be @property
methods.
Keras
-
standard subclasses of
keras.layers.Layer
,keras.losses.Loss
,keras.metrics.Metric
, andkeras.optimizers.Optimizer
.
Numpy
numpy.number
, numpy.ndarray
with numerical dtype, and numpy.dtype
.
Pandas
pandas.DataFrame
and pandas.Series
, but with the following limitations:
-
the following dtypes are not supported:
complex
,object
,timedelta
; -
the column / series names cannot be ints or int-strings: the following are not acceptable
df = pd.DataFrame([[1, 2], [3, 4]]) df = pd.DataFrame([[1, 2], [3, 4]], columns=["0", "1"])
Tensorflow
tensorflow.Tensor
with numerical dtype, but not tensorflow.RaggedTensor
.
Pytorch
-
torch.Tensor
, Warning: loaded tensors are automatically placed on the CPU and gradients are lost; -
torch.nn.Module
, don't forget to register your module type using aturbo_broccoli.Context
:# Serialization class MyModule(torch.nn.Module): ... module = MyModule() # Must be instantiable without arguments doc = tb.to_json({"module": module}) # Deserialization ctx = tb.Context(pytorch_module_types=[MyModule]) module = tb.from_json(doc, ctx)
Warning: It is not possible to register and deserialize standard pytorch module containers directly. Wrap them in your own custom module class. For following is not acceptable
import turbo_broccoli as tb import torch module = torch.nn.Sequential( torch.nn.Linear(4, 2), torch.nn.ReLU(), torch.nn.Linear(2, 1), torch.nn.ReLU(), ) obj = {"module": module} doc = tb.to_json(obj) # works, but... tb.from_json(a, ctx) # does't work
but the following works:
class MyModule(torch.nn.Module): module: torch.nn.Sequential # Wrapped sequential def __init__(self): super().__init__() self.module = torch.nn.Sequential( torch.nn.Linear(4, 2), torch.nn.ReLU(), torch.nn.Linear(2, 1), torch.nn.ReLU(), ) ... module = MyModule() # Must be instantiable without arguments doc = tb.to_json({"module": module}) ctx = tb.Context(pytorch_module_types=[MyModule]) module = tb.from_json(doc, ctx)
To circumvent all these limitations, use custom encoders / decoders.
-
torch.utils.data.ConcatDataset
,torch.utils.data.StackDataset
,torch.utils.data.Subset
,torch.utils.data.TensorDataset
, as long as the nested structure of datasets ultimately lead totorch.utils.data.TensorDataset
s (e.g. a subset of a stack of subsets of tensor datasets is supported)
Scipy
Just scipy.sparse.csr_matrix
. ^^"
Scikit-learn
sklearn
estimators (i.e. that inherit from
sklean.base.BaseEstimator
).
Supported estimators are: AdaBoostClassifier
, AdaBoostRegressor
,
AdditiveChi2Sampler
, AffinityPropagation
, AgglomerativeClustering
,
ARDRegression
, BayesianGaussianMixture
, BayesianRidge
, BernoulliNB
,
BernoulliRBM
, Binarizer
, CategoricalNB
, CCA
, ClassifierChain
,
ComplementNB
, DBSCAN
, DecisionTreeClassifier
, DecisionTreeRegressor
,
DictionaryLearning
, ElasticNet
, EllipticEnvelope
, EmpiricalCovariance
,
ExtraTreeClassifier
, ExtraTreeRegressor
, ExtraTreesClassifier
,
ExtraTreesRegressor
, FactorAnalysis
, FeatureUnion
, GaussianMixture
,
GaussianNB
, GaussianRandomProjection
, GraphicalLasso
, HuberRegressor
,
IncrementalPCA
, IsolationForest
, Isomap
, KernelCenterer
,
KernelDensity
, KernelPCA
, KernelRidge
, KMeans
, KNeighborsClassifier
,
KNeighborsRegressor
, KNNImputer
, LabelBinarizer
, LabelEncoder
,
LabelPropagation
, LabelSpreading
, Lars
, Lasso
, LassoLars
,
LassoLarsIC
, LatentDirichletAllocation
, LedoitWolf
,
LinearDiscriminantAnalysis
, LinearRegression
, LinearSVC
, LinearSVR
,
LocallyLinearEmbedding
, LocalOutlierFactor
, LogisticRegression
,
MaxAbsScaler
, MDS
, MeanShift
, MinCovDet
, MiniBatchDictionaryLearning
,
MiniBatchKMeans
, MiniBatchSparsePCA
, MinMaxScaler
, MissingIndicator
,
MLPClassifier
, MLPRegressor
, MultiLabelBinarizer
, MultinomialNB
,
MultiOutputClassifier
, MultiOutputRegressor
, MultiTaskElasticNet
,
MultiTaskLasso
, NearestCentroid
, NearestNeighbors
,
NeighborhoodComponentsAnalysis
, NMF
, Normalizer
, NuSVC
, NuSVR
,
Nystroem
, OAS
, OneClassSVM
, OneVsOneClassifier
, OneVsRestClassifier
,
OPTICS
, OrthogonalMatchingPursuit
, PassiveAggressiveRegressor
, PCA
,
Pipeline
, PLSCanonical
, PLSRegression
, PLSSVD
, PolynomialCountSketch
,
PolynomialFeatures
, PowerTransformer
, QuadraticDiscriminantAnalysis
,
QuantileRegressor
, QuantileTransformer
, RadiusNeighborsClassifier
,
RadiusNeighborsRegressor
, RandomForestClassifier
, RandomForestRegressor
,
RANSACRegressor
, RBFSampler
, RegressorChain
, RFE
, RFECV
, Ridge
,
RidgeClassifier
, RobustScaler
, SelectFromModel
, SelfTrainingClassifier
,
SGDRegressor
, ShrunkCovariance
, SimpleImputer
, SkewedChi2Sampler
,
SparsePCA
, SparseRandomProjection
, SpectralBiclustering
,
SpectralClustering
, SpectralCoclustering
, SpectralEmbedding
,
StackingClassifier
, StackingRegressor
, StandardScaler
, SVC
, SVC
,
SVR
, SVR
, TheilSenRegressor
, TruncatedSVD
, TSNE
, VarianceThreshold
,
VotingClassifier
, VotingRegressor
.
Doesn't work with:
-
All CV classes because the
score_
attribute is a dict indexed withnp.int64
, whichjson.JSONEncoder._iterencode_dict
rejects. -
Everything that is parametrized by an arbitrary object/callable/estimator:
FunctionTransformer
,TransformedTargetRegressor
. -
Other classes that have non JSON-serializable attributes:
Class Non-serializable attr. Birch
_CFNode
BisectingKMeans
function
ColumnTransformer
slice
GammaRegressor
HalfGammaLoss
GaussianProcessClassifier
Product
GaussianProcessRegressor
Sum
IsotonicRegression
interp1d
OutputCodeClassifier
_ConstantPredictor
Perceptron
Hinge
PoissonRegressor
HalfPoissonLoss
SGDClassifier
Hinge
SGDOneClassSVM
Hinge
SplineTransformer
BSpline
TweedieRegressor
HalfTweedieLossIdentity
-
Other errors:
-
FastICA
: I'm not sure why... -
BaggingClassifier
:IndexError: only integers, slices (:), ellipsis (...), numpy.newaxis (None) and integer or boolean arrays are valid indices
. -
GradientBoostingClassifier
,GradientBoostingRegressor
,RandomTreesEmbedding
,KBinsDiscretizer
:Exception: dtype object is not covered
. -
HistGradientBoostingClassifier
: Problems with deserialization of_BinMapper
object? -
PassiveAggressiveClassifier
: some unknown label type error... -
SequentialFeatureSelector
: Problem with the unit test itself ^^" -
KNeighborsTransformer
: A serialized-deserialized instance seems tofit_transform
an array to a sparse matrix whereas the original object returns an array? -
RadiusNeighborsTransformer
: Inverse problem fromKNeighborsTransformer
.
-
Bokeh
NetworkX
All NetworkX graph objects.
Secrets
Basic Python types can be wrapped in their corresponding secret type according to the following table
Python type | Secret type |
---|---|
dict |
turbo_broccoli.SecretDict |
float |
turbo_broccoli.SecretFloat |
int |
turbo_broccoli.SecretInt |
list |
turbo_broccoli.SecretList |
str |
turbo_broccoli.SecretStr |
The secret value can be recovered with the get_secret_value
method. At
serialization, the this value will be encrypted. For example,
## See https://pynacl.readthedocs.io/en/latest/secret/#key
import nacl.secret
import nacl.utils
import turbo_broccoli as tb
key = nacl.utils.random(nacl.secret.SecretBox.KEY_SIZE)
ctx = tb.Context(nacl_shared_key=key)
obj = {"user": "alice", "password": tb.SecretStr("dolphin")}
tb.to_json(obj, ctx)
produces the following string (modulo indentation and modulo the encrypted content):
{
"user": "alice",
"password": {
"__type__": "secret",
"__version__": 2,
"data": {
"__type__": "bytes",
"__version__": 3,
"data": "gbRXF3hq9Q9hIQ9Xz+WdGKYP5meJ4eTmlFt0r0Ov3PV64065plk6RqsFUcynSOqHzA=="
}
}
}
Deserialization decrypts the secrets, but they stay wrapped inside the secret
types above. If the wrong key is provided, an exception is raised. If no key is
provided, the secret values are replaced by a
turbo_broccoli.LockedSecret
. Internally, TurboBroccoli uses
pynacl
's
SecretBox
.
Warning: In the case of SecretDict
and SecretList
, the values contained
within must be JSON-serializable without TurboBroccoli. The following is
not acceptable:
import nacl.secret
import nacl.utils
import numpy as np
import turbo_broccoli as tb
key = nacl.utils.random(nacl.secret.SecretBox.KEY_SIZE)
ctx = tb.Context(nacl_shared_key=key)
obj = {"data": tb.SecretList([np.array([1, 2, 3])])}
tb.to_json(obj, ctx)
See also the TB_SHARED_KEY
environment variable below.
Embedded dict/lists
Sometimes, it may be useful to store part of a document in its own file and
have referrenced in the main file. This is possible using
EmbeddedDict
and
EmbeddedList
.
For example,
from turbo_broccoli import save_json, EmbeddedDict
data = {"a": 1, "b": EmbeddedDict({"c": 2, "d": 3})}
save_json(data, "data.json")
will result in a data.json
file containing
{
"a": 1,
"b": {
"__type__": "embedded.dict",
"__version__": 1,
"id": "4ea0b3f3-f3e4-42bd-9db9-1e4e0b9f4fae"
}
}
(modulo indentation and the id), and an artefact file
data.4ea0b3f3-f3e4-42bd-9db9-1e4e0b9f4fae.json
containing
{"c": 2, "d": 3}
External data
If you are serializing/deserializing from a file, you can use
turbo_broccoli.ExternalData
to point to data contained in another file without integrating it to the
current document.
For example, let's say you want to create foo/bar.json
where the a
key
points to the data contained in foo/foooooo/data.np
:
import turbo_broccoli as tb
document = {
"a": tb.ExternalData("foooooo/data.np"),
...
}
# data.np is loaded when creating the ExternalData object
print(document["a"].data)
# Saving
tb.save_json(document, "foo/bar.json")
# Loading
document2 = tb.load_json("foo/bar.json")
from numpy.testing import assert_array_equal
assert_array_equal(document["a"].data, document2["a"].data)
Warnings:
-
document["a"].data
is read only, the following will have no effect onfoo/foooooo/data.np
:document["a"].data += 1 tb.save_json(document, "foo/bar.json")
-
When serializing/deserializing a
ExternalData
object, an actual JSON document must be involved. In particular, usingtb.to_json
ortb.from_json
is not possible. -
The external data file's path must be a subpath of the output/intput JSON file, and provided either relative to the output/intput JSON file, or in absolute form:
# OK, relative document = {"a": tb.ExternalData("foooooo/data.np")} tb.save_json(document, "foo/bar.json") # OK, absolute document = {"a": tb.ExternalData("/home/alice/foo/foooooo/data.np")} tb.save_json(document, "foo/bar.json") # ERROR, not subpath document = {"a": tb.ExternalData("/home/alice/data.np")} tb.save_json(document, "/home/alice/foo/bar.json")
Environment variables
Some behaviors of TurboBroccoli can be tweaked by setting specific environment
variables. If you want to modify these parameters programatically, do not do so
by modifying os.environ
. Rather, use a
turbo_broccoli.Context
.
-
TB_ARTIFACT_PATH
(default: output JSON file's parent directory): During serialization, TurboBroccoli may create artifacts to which the JSON object will point to. The artifacts will be stored inTB_ARTIFACT_PATH
if specified. -
TB_KERAS_FORMAT
(default:tf
, valid values arekeras
,tf
, andh5
): The serialization format for keras models. Ifh5
ortf
is used, an artifact following said format will be created inTB_ARTIFACT_PATH
. Ifjson
is used, the model will be contained in the JSON document (anthough the weights may be in artifacts if they are too large). -
TB_MAX_NBYTES
(default:8000
): The maximum byte size of a python object beyond which serialization will produce an artifact instead of storing it in the JSON document. This does not limit the size of the overall JSON document though. 8000 bytes should be enough for a numpy array of 1000float64
s to be stored in-document. -
TB_NODECODE
(default: empty): Comma-separated list of types to not deserialize, for examplebytes,numpy.ndarray
. Excludable types are:-
bokeh
,bokeh.buffer
,bokeh.generic
, -
bytes
, Warning excludingbytes
will also excludebokeh
,numpy.ndarray
,pytorch.module
,pytorch.tensor
,secret
,tensorflow.tensor
, -
collections
,collections.deque
,collections.namedtuple
,collections.set
, -
dataclass
,dataclass.<dataclass_name>
(case sensitive), -
datetime
,datetime.datetime
,datetime.time
,datetime.timedelta
, -
dict
(this only prevents decoding dicts with non-string keys), -
embedded
,embedded.dict
,embedded.list
, -
external
, -
generic
, -
keras
,keras.model
,keras.layer
,keras.loss
,keras.metric
,keras.optimizer
, -
networkx
,networkx.graph
, -
numpy
,numpy.ndarray
,numpy.number
,numpy.dtype
,numpy.random_state
, -
pandas
,pandas.dataframe
,pandas.series
, Warning: excludingpandas.dataframe
will also excludepandas.series
, -
pathlib
,pathlib.path
, Warning: excludingpathlib.path
will also excludeexternal
, -
pytorch
,pytorch.tensor
,pytorch.module
,pytorch.concatdataset
,pytorch.stackdataset
,pytorch.subset
,pytorch.tensordataset
-
scipy
,scipy.csr_matrix
, -
secret
, -
sklearn
,sklearn.estimator
,sklearn.estimator.<estimator name>
(case sensitive, see the list of supported sklearn estimators below), -
tensorflow
,tensorflow.sparse_tensor
,tensorflow.tensor
,tensorflow.variable
. -
uuid
-
external
-
-
TB_SHARED_KEY
(default: empty): Secret key used to encrypt/decrypt secrets. The encryption usespynacl
'sSecretBox
. An exception is raised when attempting to serialize a secret type while no key is set.
Contributing
Dependencies
-
python3.10
or newer; -
requirements.txt
for runtime dependencies; -
requirements.dev.txt
for development dependencies. -
make
(optional);
Simply run
virtualenv venv -p python3.10
. ./venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt
pip install -r requirements.dev.txt
Documentation
Simply run
make docs
This will generate the HTML doc of the project, and the index file should be at
docs/index.html
. To have it directly in your browser, run
make docs-browser
Code quality
Don't forget to run
make
to format the code following black, typecheck it using mypy, and check it against coding standards using pylint.
Unit tests
Run
make test
to have pytest run the unit tests in tests/
.
Credits
This project takes inspiration from Crimson-Crow/json-numpy.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file turbo_broccoli-4.12.2.tar.gz
.
File metadata
- Download URL: turbo_broccoli-4.12.2.tar.gz
- Upload date:
- Size: 72.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 52fd71dc87c3753655b1c99b360622725d37e141bb10980bfa6f233280a98c77 |
|
MD5 | 3308a21b3a2cb3d77872d4bd3df3c940 |
|
BLAKE2b-256 | 03591859e733ff10169e8a9625686b881c569a34ded5ac5d1d6e011174016b99 |
File details
Details for the file turbo_broccoli-4.12.2-py3-none-any.whl
.
File metadata
- Download URL: turbo_broccoli-4.12.2-py3-none-any.whl
- Upload date:
- Size: 54.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f689159b840ec632a4d8adbf5fedddcde1806b9918434d8735cab472612f0037 |
|
MD5 | b3f67aab97a67fa9bd7660ec56fadcdd |
|
BLAKE2b-256 | 7206a674d3893910e89ca29ecb9d12228e24f74d660c7e0447fd421295141b8e |