Differentiable Wolski twiss matrices computation for arbitrary dimension stable symplectic matrices
Project description
twiss, 2022-2024
Coupled twiss parameters (Wolski twiss matrices) computation for arbitrary even dimension.
Install & build
$ pip install git+https://github.com/i-a-morozov/twiss.git@main
or
$ pip install twiss -U
Documentation
https://i-a-morozov.github.io/twiss/
Twiss
Compute tunes, normalization matrix and twiss matrices.
>>> from math import pi
>>> import torch
>>> from twiss.matrix import rotation
>>> from twiss.wolski import twiss
>>> m = rotation(2*pi*torch.tensor(0.88, dtype=torch.float64))
>>> t, n, w = twiss(m)
>>> t
tensor([0.8800], dtype=torch.float64)
>>> n
tensor([[1.0000, 0.0000],
[0.0000, 1.0000]], dtype=torch.float64)
>>> w
tensor([[[1.0000, 0.0000],
[0.0000, 1.0000]]], dtype=torch.float64)
Input matrices can have arbitrary even dimension.
>>> from math import pi
>>> import torch
>>> from twiss.matrix import rotation
>>> from twiss.wolski import twiss
>>> m = rotation(*(2*pi*torch.linspace(0.1, 0.9, 9, dtype=torch.float64)))
>>> t, n, w = twiss(m)
>>> t
tensor([0.1000, 0.2000, 0.3000, 0.4000, 0.5000, 0.6000, 0.7000, 0.8000, 0.9000],
dtype=torch.float64)
Can be mapped over a batch of input matrices.
>>> from math import pi
>>> import torch
>>> from twiss.matrix import rotation
>>> from twiss.wolski import twiss
>>> m = torch.func.vmap(rotation)(2*pi*torch.linspace(0.1, 0.9, 9, dtype=torch.float64))
>>> t, n, w = torch.func.vmap(twiss)(m)
>>> t
tensor([[0.1000],
[0.2000],
[0.3000],
[0.4000],
[0.5000],
[0.6000],
[0.7000],
[0.8000],
[0.9000]], dtype=torch.float64)
Can be used to compute derivatives of observables.
>>> from math import pi
>>> import torch
>>> from twiss.matrix import rotation
>>> from twiss.wolski import twiss
>>> def fn(k):
... m = rotation(2*pi*torch.tensor(0.88, dtype=torch.float64))
... i = torch.ones_like(k)
... o = torch.zeros_like(k)
... m = m @ torch.stack([i, k, o, i]).reshape(m.shape)
... t, *_ = twiss(m)
... return t
>>> k = torch.tensor(0.0, dtype=torch.float64)
>>> fn(k)
tensor([0.8800], dtype=torch.float64)
>>> torch.func.jacfwd(fn)(k)
tensor([0.0796], dtype=torch.float64)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
twiss-0.2.6.tar.gz
(622.8 kB
view details)
Built Distribution
twiss-0.2.6-py3-none-any.whl
(13.4 kB
view details)
File details
Details for the file twiss-0.2.6.tar.gz
.
File metadata
- Download URL: twiss-0.2.6.tar.gz
- Upload date:
- Size: 622.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8542b8bb44fa04fc24b5f6a06fb0ec7d65d83dfc5eac5dcbe957570c2380aacd |
|
MD5 | cae12a9caf465c941c707343530e4fb1 |
|
BLAKE2b-256 | 7feddef5c6380722460d644efe59cf7f9045d25c23706880796a0e710b16acf5 |
File details
Details for the file twiss-0.2.6-py3-none-any.whl
.
File metadata
- Download URL: twiss-0.2.6-py3-none-any.whl
- Upload date:
- Size: 13.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ccdb689b78498d09e962aea5009f0c85dd65f8f3065512dfcbb53f873588f302 |
|
MD5 | 42db2fce34c8cf13a638302946a979c8 |
|
BLAKE2b-256 | 950b8753110f70ad33adbe733e22b4bc0e5390ba3b0e5c38c40a5349b6f54ae1 |