Several two-samples tests for count data
Project description
TwoSamplesBinomial: Two-sample testing for counts data
Usually in the context of a multiple testing approach to compare two or more frequency tables. Combine with multiple-hypothesis-testing
to
obtain a global test for the significance of the difference between the
tables.
References:
- [1] D. L. Donoho and A. Kipnis. (2022) Higher criticism to compare two large frequency tables, with sensitivity to possible rare and weak differences. Annals of Statistics.
- [2] C. B. Dean. (1992) Testing for Overdispersion in Poisson and Binomial Regression Models. Journal of the American Statistical Association
Methods:
bin_allocation_test
(the test from [1])bin_variance_test
(test from [2])bin_variance_test_df
the same asbin_variance_test
plus additional information
Additional auxiliary function of independent interest:
poisson_test
Vectorized one-sided Poisson test with an option to do a randomized testbinom_test
Vectorized one-sided binomial test with an option to do a randomized testbinom_test_two_sided
Vectorized Two-sided binomial test with an option to do a randomized testbinom_test_two_sided_slow
Vectorized two-sided binomial test using scipy.stats.binom_test
Example:
from twosample import bin_allocation_test, bin_variance_test
from multitest import MultiTest
import numpy as np
N = 100
n = 500
eps = 0.1
mu = 0.01
P = np.ones(N) / N
Q = P.copy()
Q[np.random.rand(N) < eps] += mu
Q = Q / Q.sum()
smp1 = np.random.multinomial(n, P) # sample form P
smp2 = np.random.multinomial(n, Q) # sample from Q
pvals_alloc = bin_allocation_test(smp1, smp2) # binomial P-values
pvals_var = bin_variance_test(smp1, smp2) # binomial P-values
mt_alloc = MultiTest(pvals_alloc)
mt_var = MultiTest(pvals_var)
print("HC(binomial_allocation) = ", mt_alloc.hc()[0])
print("HC(varaince) = ", mt_var.hc()[0])
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for two-sample-binomial-0.0.4.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3de158e7806cf5a7cd2cbb619bcdf8ae91781c3dfeb9796fcd901e20c12210f2 |
|
MD5 | 70eca8f6ab733f6db59ce13fc0bfdf1c |
|
BLAKE2b-256 | f72f97bc0c770f57710d0c969da351c37557dfad4692921abb34b0a339463d7e |
Close
Hashes for two_sample_binomial-0.0.4-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 703c023fcd78cb99753fb696a3157665de37863551e131ef6b123e2772e2f5dc |
|
MD5 | f88773f4cf76b97966aaa3454c0a0231 |
|
BLAKE2b-256 | 6428f855f8d0163ad20a7b0a6cd28d2426a0aeaceeaeb41d1de28483eed9a505 |