Skip to main content

Type annotations for aiobotocore.DataPipeline 2.1.0 service generated by mypy-boto3-builder 6.4.2

Project description

mypy-boto3-datapipeline

PyPI - types-aiobotocore-datapipeline PyPI - Python Version Docs PyPI - Downloads

boto3.typed

Type annotations for boto3.DataPipeline 1.20.47 service compatible with VSCode, PyCharm, Emacs, Sublime Text, mypy, pyright and other tools.

Generated by mypy-boto3-builder 6.4.2.

More information can be found on boto3-stubs page and in types-aiobotocore-datapipeline docs

See how it helps to find and fix potential bugs:

boto3-stubs demo

How to install

VSCode extension

Add AWS Boto3 extension to your VSCode and run AWS boto3: Quick Start command.

Click Modify and select boto3 common and DataPipeline.

From PyPI with pip

Install types-aiobotocore for DataPipeline service.

# install with aiobotocore type annotations
python -m pip install 'types-aiobotocore[datapipeline]'

# Lite version does not provide session.create_client overloads
# it is more RAM-friendly, but requires explicit type annotations
python -m pip install 'types-aiobotocore-lite[datapipeline]'

# standalone installation
python -m pip install types-aiobotocore-datapipeline

Usage

VSCode

  • Install Python extension
  • Install Pylance extension
  • Set Pylance as your Python Language Server
  • Install types-aiobotocore[datapipeline] in your environment: python -m pip install 'types-aiobotocore[datapipeline]'

Both type checking and auto-complete should work for DataPipeline service. No explicit type annotations required, write your boto3 code as usual.

PyCharm

  • Install types-aiobotocore[datapipeline] in your environment: python -m pip install 'types-aiobotocore[datapipeline]'

Both type checking and auto-complete should work for DataPipeline service. No explicit type annotations required, write your aiobotocore code as usual. Auto-complete can be slow on big projects or if you have a lot of installed types-aiobotocore submodules.

Other IDEs

Not tested, but as long as your IDE supports mypy or pyright, everything should work.

mypy

  • Install mypy: python -m pip install mypy
  • Install types-aiobotocore[datapipeline] in your environment: python -m pip install 'types-aiobotocore[datapipeline]'
  • Run mypy as usual

Type checking should work for DataPipeline service. No explicit type annotations required, write your aiobotocore code as usual.

pyright

  • Install pyright: yarn global add pyright
  • Install types-aiobotocore[datapipeline] in your environment: python -m pip install 'types-aiobotocore[datapipeline]'
  • Optionally, you can install boto3-stubs to typings folder.

Type checking should work for DataPipeline service. No explicit type annotations required, write your aiobotocore code as usual.

Explicit type annotations

Client annotations

DataPipelineClient provides annotations for session.create_client("datapipeline").

from aiobotocore.session import get_session

from types_aiobotocore_datapipeline import DataPipelineClient

session = get_session()
async with session.create_client("datapipeline") as client:
    client: DataPipelineClient
    # now client usage is checked by mypy and IDE should provide code auto-complete

Paginators annotations

types_aiobotocore_datapipeline.paginator module contains type annotations for all paginators.

from aiobotocore.session import get_session

from types_aiobotocore_datapipeline import DataPipelineClient
from types_aiobotocore_datapipeline.paginator import (
    DescribeObjectsPaginator,
    ListPipelinesPaginator,
    QueryObjectsPaginator,
)

session = get_session()
async with session.create_client("datapipeline") as client:
    client: DataPipelineClient

    # Explicit type annotations are optional here
    # Type should be correctly discovered by mypy and IDEs
    # VSCode requires explicit type annotations
        describe_objects_paginator: DescribeObjectsPaginator = client.get_paginator("describe_objects")
        list_pipelines_paginator: ListPipelinesPaginator = client.get_paginator("list_pipelines")
        query_objects_paginator: QueryObjectsPaginator = client.get_paginator("query_objects")
    ```







### Literals

`types_aiobotocore_datapipeline.literals` module contains literals extracted from shapes
that can be used in user code for type checking.

```python
from types_aiobotocore_datapipeline.literals import (
    DescribeObjectsPaginatorName,
    ListPipelinesPaginatorName,
    OperatorTypeType,
    QueryObjectsPaginatorName,
    TaskStatusType,
    ServiceName,
    PaginatorName,
)

def check_value(value: DescribeObjectsPaginatorName) -> bool:
    ...

Typed dictionaries

types_aiobotocore_datapipeline.type_defs module contains structures and shapes assembled to typed dictionaries for additional type checking.

from types_aiobotocore_datapipeline.type_defs import (
    ActivatePipelineInputRequestTypeDef,
    AddTagsInputRequestTypeDef,
    CreatePipelineInputRequestTypeDef,
    CreatePipelineOutputTypeDef,
    DeactivatePipelineInputRequestTypeDef,
    DeletePipelineInputRequestTypeDef,
    DescribeObjectsInputRequestTypeDef,
    DescribeObjectsOutputTypeDef,
    DescribePipelinesInputRequestTypeDef,
    DescribePipelinesOutputTypeDef,
    EvaluateExpressionInputRequestTypeDef,
    EvaluateExpressionOutputTypeDef,
    FieldTypeDef,
    GetPipelineDefinitionInputRequestTypeDef,
    GetPipelineDefinitionOutputTypeDef,
    InstanceIdentityTypeDef,
    ListPipelinesInputRequestTypeDef,
    ListPipelinesOutputTypeDef,
    OperatorTypeDef,
    PaginatorConfigTypeDef,
    ParameterAttributeTypeDef,
    ParameterObjectTypeDef,
    ParameterValueTypeDef,
    PipelineDescriptionTypeDef,
    PipelineIdNameTypeDef,
    PipelineObjectTypeDef,
    PollForTaskInputRequestTypeDef,
    PollForTaskOutputTypeDef,
    PutPipelineDefinitionInputRequestTypeDef,
    PutPipelineDefinitionOutputTypeDef,
    QueryObjectsInputRequestTypeDef,
    QueryObjectsOutputTypeDef,
    QueryTypeDef,
    RemoveTagsInputRequestTypeDef,
    ReportTaskProgressInputRequestTypeDef,
    ReportTaskProgressOutputTypeDef,
    ReportTaskRunnerHeartbeatInputRequestTypeDef,
    ReportTaskRunnerHeartbeatOutputTypeDef,
    ResponseMetadataTypeDef,
    SelectorTypeDef,
    SetStatusInputRequestTypeDef,
    SetTaskStatusInputRequestTypeDef,
    TagTypeDef,
    TaskObjectTypeDef,
    ValidatePipelineDefinitionInputRequestTypeDef,
    ValidatePipelineDefinitionOutputTypeDef,
    ValidationErrorTypeDef,
    ValidationWarningTypeDef,
)

def get_structure() -> ActivatePipelineInputRequestTypeDef:
    return {
      ...
    }

Versioning

types-aiobotocore-datapipeline version is the same as related boto3 version and follows PEP 440 format.

Documentation

All type annotations can be found in types-aiobotocore-datapipeline docs

Support and contributing

This package is auto-generated. Please reports any bugs or request new features in mypy-boto3-builder repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file types-aiobotocore-datapipeline-2.1.0.post1.tar.gz.

File metadata

  • Download URL: types-aiobotocore-datapipeline-2.1.0.post1.tar.gz
  • Upload date:
  • Size: 15.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for types-aiobotocore-datapipeline-2.1.0.post1.tar.gz
Algorithm Hash digest
SHA256 99da6857dabf3ac0c7b11b29f5313e42b10b7555d7cf480bbaaa1e897e517938
MD5 4181e3f69b63b2c9b576d03b58677022
BLAKE2b-256 1349ebc13569de54fa78630b09ff1df1cfc3ab27681b99f96fa773ea365ada3d

See more details on using hashes here.

File details

Details for the file types_aiobotocore_datapipeline-2.1.0.post1-py3-none-any.whl.

File metadata

  • Download URL: types_aiobotocore_datapipeline-2.1.0.post1-py3-none-any.whl
  • Upload date:
  • Size: 23.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for types_aiobotocore_datapipeline-2.1.0.post1-py3-none-any.whl
Algorithm Hash digest
SHA256 052f6186a8c4e075f7216e1d34077ca9e869d7f7c8655ff54e326d37c5b1664d
MD5 4b1830b296d5e71907b375e58575718c
BLAKE2b-256 5f679c90c35aff0606de4d90c6c32e628e9422fe656df7fbe31f79e7eb35ee98

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page