Skip to main content

Type annotations for aiobotocore.MachineLearning 2.7.0 service generated with mypy-boto3-builder 7.19.0

Project description

types-aiobotocore-machinelearning

PyPI - types-aiobotocore-machinelearning PyPI - Python Version Docs PyPI - Downloads

boto3.typed

Type annotations for aiobotocore.MachineLearning 2.7.0 service compatible with VSCode, PyCharm, Emacs, Sublime Text, mypy, pyright and other tools.

Generated by mypy-boto3-builder 7.19.0.

More information can be found on types-aiobotocore page and in types-aiobotocore-machinelearning docs.

See how it helps to find and fix potential bugs:

boto3-stubs demo

How to install

From PyPI with pip

Install types-aiobotocore for MachineLearning service.

# install with aiobotocore type annotations
python -m pip install 'types-aiobotocore[machinelearning]'


# Lite version does not provide session.client/resource overloads
# it is more RAM-friendly, but requires explicit type annotations
python -m pip install 'types-aiobotocore-lite[machinelearning]'


# standalone installation
python -m pip install types-aiobotocore-machinelearning

How to uninstall

python -m pip uninstall -y types-aiobotocore-machinelearning

Usage

VSCode

python -m pip install 'types-aiobotocore[machinelearning]'

Both type checking and code completion should now work. No explicit type annotations required, write your aiobotocore code as usual.

PyCharm

Install types-aiobotocore-lite[machinelearning] in your environment:

python -m pip install 'types-aiobotocore-lite[machinelearning]'`

Both type checking and code completion should now work. Explicit type annotations are required.

Use types-aiobotocore package instead for implicit type discovery.

Emacs

  • Install types-aiobotocore with services you use in your environment:
python -m pip install 'types-aiobotocore[machinelearning]'
(use-package lsp-pyright
  :ensure t
  :hook (python-mode . (lambda ()
                          (require 'lsp-pyright)
                          (lsp)))  ; or lsp-deferred
  :init (when (executable-find "python3")
          (setq lsp-pyright-python-executable-cmd "python3"))
  )
  • Make sure emacs uses the environment where you have installed types-aiobotocore

Type checking should now work. No explicit type annotations required, write your aiobotocore code as usual.

Sublime Text

  • Install types-aiobotocore[machinelearning] with services you use in your environment:
python -m pip install 'types-aiobotocore[machinelearning]'

Type checking should now work. No explicit type annotations required, write your aiobotocore code as usual.

Other IDEs

Not tested, but as long as your IDE supports mypy or pyright, everything should work.

mypy

  • Install mypy: python -m pip install mypy
  • Install types-aiobotocore[machinelearning] in your environment:
python -m pip install 'types-aiobotocore[machinelearning]'`

Type checking should now work. No explicit type annotations required, write your aiobotocore code as usual.

pyright

  • Install pyright: npm i -g pyright
  • Install types-aiobotocore[machinelearning] in your environment:
python -m pip install 'types-aiobotocore[machinelearning]'

Optionally, you can install types-aiobotocore to typings folder.

Type checking should now work. No explicit type annotations required, write your aiobotocore code as usual.

Explicit type annotations

Client annotations

MachineLearningClient provides annotations for session.create_client("machinelearning").

from aiobotocore.session import get_session

from types_aiobotocore_machinelearning import MachineLearningClient

session = get_session()
async with session.create_client("machinelearning") as client:
    client: MachineLearningClient
    # now client usage is checked by mypy and IDE should provide code completion

Paginators annotations

types_aiobotocore_machinelearning.paginator module contains type annotations for all paginators.

from aiobotocore.session import get_session

from types_aiobotocore_machinelearning import MachineLearningClient
from types_aiobotocore_machinelearning.paginator import (
    DescribeBatchPredictionsPaginator,
    DescribeDataSourcesPaginator,
    DescribeEvaluationsPaginator,
    DescribeMLModelsPaginator,
)

session = get_session()
async with session.create_client("machinelearning") as client:
    client: MachineLearningClient

    # Explicit type annotations are optional here
    # Types should be correctly discovered by mypy and IDEs
    describe_batch_predictions_paginator: DescribeBatchPredictionsPaginator = client.get_paginator(
        "describe_batch_predictions"
    )
    describe_data_sources_paginator: DescribeDataSourcesPaginator = client.get_paginator(
        "describe_data_sources"
    )
    describe_evaluations_paginator: DescribeEvaluationsPaginator = client.get_paginator(
        "describe_evaluations"
    )
    describe_ml_models_paginator: DescribeMLModelsPaginator = client.get_paginator(
        "describe_ml_models"
    )

Waiters annotations

types_aiobotocore_machinelearning.waiter module contains type annotations for all waiters.

from aiobotocore.session import get_session

from types_aiobotocore_machinelearning.client import MachineLearningClient
from types_aiobotocore_machinelearning.waiter import (
    BatchPredictionAvailableWaiter,
    DataSourceAvailableWaiter,
    EvaluationAvailableWaiter,
    MLModelAvailableWaiter,
)

session = get_session()
async with session.create_client("machinelearning") as client:
    client: MachineLearningClient

    # Explicit type annotations are optional here
    # Types should be correctly discovered by mypy and IDEs
    batch_prediction_available_waiter: BatchPredictionAvailableWaiter = client.get_waiter(
        "batch_prediction_available"
    )
    data_source_available_waiter: DataSourceAvailableWaiter = client.get_waiter(
        "data_source_available"
    )
    evaluation_available_waiter: EvaluationAvailableWaiter = client.get_waiter(
        "evaluation_available"
    )
    ml_model_available_waiter: MLModelAvailableWaiter = client.get_waiter("ml_model_available")

Literals

types_aiobotocore_machinelearning.literals module contains literals extracted from shapes that can be used in user code for type checking.

Full list of MachineLearning Literals can be found in docs.

from types_aiobotocore_machinelearning.literals import AlgorithmType


def check_value(value: AlgorithmType) -> bool: ...

Type definitions

types_aiobotocore_machinelearning.type_defs module contains structures and shapes assembled to typed dictionaries and unions for additional type checking.

Full list of MachineLearning TypeDefs can be found in docs.

from types_aiobotocore_machinelearning.type_defs import TagTypeDef


def get_value() -> TagTypeDef:
    return {...}

How it works

Fully automated mypy-boto3-builder carefully generates type annotations for each service, patiently waiting for aiobotocore updates. It delivers drop-in type annotations for you and makes sure that:

  • All available aiobotocore services are covered.
  • Each public class and method of every aiobotocore service gets valid type annotations extracted from botocore schemas.
  • Type annotations include up-to-date documentation.
  • Link to documentation is provided for every method.
  • Code is processed by black and isort for readability.

What's new

Implemented features

  • Fully type annotated boto3, botocore, aiobotocore and aioboto3 libraries
  • mypy, pyright, VSCode, PyCharm, Sublime Text and Emacs compatibility
  • Client, ServiceResource, Resource, Waiter Paginator type annotations for each service
  • Generated TypeDefs for each service
  • Generated Literals for each service
  • Auto discovery of types for boto3.client and boto3.resource calls
  • Auto discovery of types for session.client and session.resource calls
  • Auto discovery of types for client.get_waiter and client.get_paginator calls
  • Auto discovery of types for ServiceResource and Resource collections
  • Auto discovery of types for aiobotocore.Session.create_client calls

Latest changes

Builder changelog can be found in Releases.

Versioning

types-aiobotocore-machinelearning version is the same as related aiobotocore version and follows PEP 440 format.

Thank you

Documentation

All services type annotations can be found in aiobotocore docs

Support and contributing

This package is auto-generated. Please reports any bugs or request new features in mypy-boto3-builder repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

types-aiobotocore-machinelearning-2.7.0.tar.gz (23.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file types-aiobotocore-machinelearning-2.7.0.tar.gz.

File metadata

File hashes

Hashes for types-aiobotocore-machinelearning-2.7.0.tar.gz
Algorithm Hash digest
SHA256 5619dde2fbc9ef6aeba12783aa3ff31dd4fa9f82c4da708873c1d049e7b84512
MD5 2eda18dc1ba6cdb9813d59f9fee77e2f
BLAKE2b-256 41e57436d8fe00ec48743630e82f538aba74c55a2cc0c33abc86c8b4a9ca74b3

See more details on using hashes here.

File details

Details for the file types_aiobotocore_machinelearning-2.7.0-py3-none-any.whl.

File metadata

File hashes

Hashes for types_aiobotocore_machinelearning-2.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b4df3e1772771ab6deb34bab61e4da1a01a2a6ecb02764b58f4e7dbe3f818d28
MD5 8a4454f2cddf73602f249aaf34dcb3bb
BLAKE2b-256 8edb54e623c6bb5afbdbb17e7c89d895ca7cdc63e6dd3e66b6740a733e504e34

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page