Skip to main content

Uniform distributed persistent homology.

Project description

Uniform Distributed Persistent Homology (UDiPH)

Downloads PyPI license Maintenance version made-with-python

UDiPH is a package that creates a new metric space where the points are uniformly sampled with respect to a global metric. It is oriented for creating Vietoris-Rips filtrations that are independent of the metric of the initial space. This work is very influced on UMAP.

UDiPH excells when comparing homology of spaces with different metrics, for example consider a continuous deformation acting on a set of points:

Standard Vietoris-Rips filtration:

Vietoris-Rips filtration using metric space created by UDiPH is based on local density:

Since we are in the presence of a continuous deformation it is excpeted that the homology remains invariant. However due to the difference in metric in the image space, the standard Vietoris-Rips filtration does not accuratly capture this invariance. Notice how a filtration using UDiPH captures manages to capture both homology generators.

Installation

Dependencies:

  • Numpy
  • Scipy
  • Sklearn

UDIPH is available on PyPI,

pip install udiph

Usage

import udiph
M = udiph.UDIPH(X=X, n_neighbors=15, distance_matrix=False, return_complex=False)

Parameters:

  • X: numpy array of shape=(samples,features) or shape=(samples,samples) containing the data. If data is a pairwise distance matrix then distance_matrix must be set to True.
  • n_neighbors: This determines the number of points sampled from the decision boundary. More points equates for a denser sample but slows the algorithm. Default is 1000.
  • distance_matrix: Boolean value indicating if input data is or not a distance_matrix
  • return_complex: Boolean value indicating whether to return the weighted 1-d simplicial complex instead of a pairwise distance matrix.

Returns:

  • M: numpy array (samples, samples) pairwise distance matrix with respect to new Riemannian metric.
  • A: (optional) numpy array (samples, samples) adjacency matrix of the weighted 1-d simplicial complex.

How does it work?

The basic assumption on UDiPh relies on the idea that data comes uniformly sampled from an unknown Riemmannian manifold. As a consequence, "bigger" holes in the governing manifold are respresented by having a higher number of points sampled from their boundary, and "small" holes will have less points sampled.

For an in-depth explanation look at this post.

Citation

If you use UDiPH in your work or parts of the algorithm please consider citing:

Paper coming soon

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

udiph-0.0.2.tar.gz (3.9 kB view details)

Uploaded Source

File details

Details for the file udiph-0.0.2.tar.gz.

File metadata

  • Download URL: udiph-0.0.2.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.10

File hashes

Hashes for udiph-0.0.2.tar.gz
Algorithm Hash digest
SHA256 aba8c6eb40fb2141181aedbe1018ad7b4653dfcce5735697c415a7874b72bc4e
MD5 3e0384083f0d50e23bd7d091362ade82
BLAKE2b-256 339f43cce3d4a6a3e34700c4a190247f5b71e6f99e942ab22a2b86ca4037e18b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page