Skip to main content

Ultra-faint galaxy likelihood toolkit.

Project description

[![Build](https://img.shields.io/travis/DarkEnergySurvey/ugali.svg)](https://travis-ci.org/DarkEnergySurvey/ugali)
[![Release](https://img.shields.io/github/tag/DarkEnergySurvey/ugali.svg)](../../releases)
[![License](https://img.shields.io/badge/license-MIT-blue.svg)](../../)

Overview
--------

The ultra-faint galaxy likelihood (UGaLi) toolkit provides a set of python classes and functions developed for maximum-likelihood-based studies of Milky Way satellite galaxies. The primary inputs are stellar object catalogs derived from optical photometric surveys and the coverage masks of those surveys.

[Keith Bechtol](https://github.com/bechtol) & [Alex Drlica-Wagner](https://github.com/kadrlica)

Installation
------------

There are several ways to install `ugali` and it's complimentary isochrone library.

The easiest way is through PyPi using `pip`. To install just the `ugali` code base:
```
# To install just the source code
pip install ugali

# To also install the isochrone library
pip install ugali --install-option "--isochrones"
```

By default, the isochrone library is installed into `$HOME/.ugali`; however you can modify this on the command line with:
```
pip install ugali --install-option "--isochrones" --install-option "--isochrones-path <PATH-TO-ISOCHRONES>
```

To get the most up-to-date version of `ugali`, you can download the source code from github and install with `setup.py`:
```
git clone https://github.com/DarkEnergySurvey/ugali.git
cd ugali

# Install the python source code
python setup.py install

# To also install the isochrone library
python setup.py install --isochrones

# To specify the isochrone install path
python setup.py install --isochrones --isochrones-path=<PATH>
```

If you place the isochrones in a different directory be sure that `ugali` knows where to find them:
```
export UGALIDIR=$<INSTALL_PATH>/isochrones
```

Usage Examples
--------------
Examples go here.

Code Repository
---------------
* https://bitbucket.org/bechtol/ugali/
* https://github.com/kadrlica/ugali/

Dependencies
------------
These should mostly be taken care of by PyPi with a `pip install`.

### Python packages:
* [numpy](http://www.numpy.org/)
* [scipy](https://www.scipy.org/)
* [matplotlib](http://matplotlib.org/)
* [pyfits](http://www.stsci.edu/institute/software_hardware/pyfits)
* [healpy](https://github.com/healpy/healpy)
* [astropy](http://www.astropy.org/)
* [emcee](http://dan.iel.fm/emcee/current/)
* [pyyaml](http://pyyaml.org/)

### Mangle:
Not a strict dependency. Used to interface with masks produced by
the Dark Energy Survey Data Mangement group. Download and documentation
available at http://space.mit.edu/~molly/mangle/

### Isochrones:
The ugali tools make use of a large library of stellar isochrones. These isochrones are derived from two different groups and are distributed as binary tarballs with releases of ugali.
* Padova isochrones (http://stev.oapd.inaf.it/cgi-bin/cmd)
* Dartmouth isochrones (http://stellar.dartmouth.edu/models/isolf_new.html)

Conventions
-----------

### Indexing:
array[index_z][index_y][index_x]

### Naming:
* package_name
* module_name.py
* ClassName
* functionName
* variable_name

ABBREVIATIONS
-------------
* IMF: initial mass function
* CMD: color-magnitude diagram
* ROI: region of interest
* PDF: probability distribution function
* LUT: look-up table
* LKHD: likelihood

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ugali-1.6.2rc1.tar.gz (156.3 kB view details)

Uploaded Source

File details

Details for the file ugali-1.6.2rc1.tar.gz.

File metadata

  • Download URL: ugali-1.6.2rc1.tar.gz
  • Upload date:
  • Size: 156.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for ugali-1.6.2rc1.tar.gz
Algorithm Hash digest
SHA256 04d6e309392e3eded8d6fdda21dddaa70f190274baa15df151781018429dd02d
MD5 8bcd8e19cb77d1f869aeb47874ca2049
BLAKE2b-256 b712d6b02727bd7a3e6fd50992498f1a178d8ab950cec3ee20d34ef9583dd616

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page