Skip to main content

A Python package for aggregating and processing RSS feeds with LLM-enhanced content rewriting.

Project description

UglyFeed UglyFeed

UglyFeed is a simple application designed to retrieve, aggregate, filter, rewrite, evaluate and serve content (RSS feeds) written by a large language model. This repository provides the code, the documentation, a FAQ page and some optional scripts to evaluate the generated content.

GitHub last commit GitHub Issues or Pull Requests Pylint CodeQL Docker Pulls PyPI - Downloads

Features

  • 📡 Retrieve RSS feeds
  • 🧮 Aggregate feeds items by similarity
  • ✨ Rewrite content using LLM API
  • 💾 Save rewritten feeds to JSON files
  • 🔁 Convert JSON to valid RSS feed
  • 🌐 Serve XML feed via HTTP server
  • 🌎 Deploy XML feed to GitHub or GitLab
  • 📈 Evaluate generated content
  • 🖥️ Web UI based on Streamlit
  • 📰 RSS test feeds available
  • 🤖 Same codebase for all releases
  • 🛑 Simple post-filter moderation

Requirements

Supported API and models

  • OpenAI API (gpt-3.5-turbo, gpt-4, gpt-4o)
  • Ollama API (all models like llama3, phi3, qwen2)
  • Groq API (llama3-8b-8192, llama3-70b-8192, gemma-7b-it, mixtral-8x7b-32768)
  • Anthropic API (claude-3-haiku-20240307, claude-3-sonnet-20240229, claude-3-opus-20240229)

Packages

Quick start

Prerequisites

  • Docker: Ensure you have Docker installed on your system. You can download and install it from Docker's official site.
  • Ollama to run local models or an OpenAI, Groq or Anthropic API key.

You can use your own models by running a compatible OpenAI LLM server. You must change the OpenAI API url parameter.

Running the Container

To start the UglyFeed app, use the following docker run command:

docker run -p 8001:8001 -p 8501:8501 -v /path/to/local/feeds.txt:/app/input/feeds.txt -v /path/to/local/config.yaml:/app/config.yaml fabriziosalmi/uglyfeed:latest

Configure the application

In the Configuration page (or by manually editing the config.yaml file) you will find all configuration options. You must change at least the source feeds you want to aggregate, the LLM API and model to use to rewrite the aggregated feeds. You can then retrieve the final uglyfeed.xml feed in many ways:

  • local filesystem
  • download from web UI
  • HTTP server url
  • HTTPS GitHub CDN url

You can easily extend it to send it to cms, notification or messaging systems.

Execute the application scripts

Execute all scripts in the Run scripts page easily by clicking on the button Run main.py, llm_processor.py, json2rss.py sequentially. You can check for logs, errors and informational messages.

Serve the final rewritten XML feed via HTTP

Once all scripts completed go to the View and Serve XML page where you can view and download the generated XML feed. If you start the HTTP server you can access to the XML url at http://container_ip:8001/uglyfeed.xml

Deploy the final rewritten XML feed to GitHub/GitLab

Once all scripts completed go to the Deploy page where you can push the final rewritten XML file to the configured GitHub/GitLab repository, the public XML URL to use by RSS readers is returned for each enabled platform.

Documentation

Please refer to the extended documentation to better understand how to get the best from this application.

Use cases

The project can be easily customized to fit several use cases:

  • Smart Content Curation: Create bespoke newsfeeds tailored to niche interests, blending articles from diverse sources into a captivating, engaging narrative.
  • Dynamic Blog Generation: Automate blog post creation by rewriting and enhancing existing articles, optimizing them for readability and SEO.
  • Interactive Educational Tools: Develop AI-driven study aids that summarize and rephrase academic papers or textbooks, making complex topics more accessible and fun.
  • Personalized Reading Experiences: Craft custom reading lists that adapt to user preferences, offering fresh perspectives on favorite topics.
  • Brand Monitoring: Aggregate and summarize brand mentions across the web, providing concise, actionable insights for marketing teams.
  • Multilingual Content Delivery: Automatically translate and rewrite content from international sources, broadening the scope of accessible information.
  • Enhanced RSS Feeds: Offer enriched RSS feeds that summarize, evaluate, and filter content, providing users with high-quality, relevant updates.
  • Creative Writing Assistance: Assist writers by generating rewritten drafts of their work, helping overcome writer's block and sparking new ideas.
  • Content Repurposing: Transform long-form content into shorter, more digestible formats like infographics, slideshows, and social media snippets.
  • Fake News Detection Datasets: Generate datasets by rewriting news articles for use in training models to recognize and combat fake news.

Contribution

Feel free to open issues or submit pull requests. Any contributions are welcome!

Roadmap

I started this project some weeks ago to experiment, get fun, learn and contribute to the open source community on my free time. I am so grateful to those who already made me empowering this pathway in a so short timeframe 🙏

Here some improvements I am still working on:

  • overall code improvements and tests
  • generate media from rewritten content
  • here something i forgot 😅

Disclaimer

It is crucial to acknowledge the potential misuse of AI language models by this tool. The use of adversarial prompts and models can easily lead to the creation of misleading content. This application should not be used with the intent to deceive or mislead others. Be a responsible user and prioritize ethical practices when utilizing language models and AI technologies.

License

This project is licensed under the AGPL3 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

uglypy-0.0.27.tar.gz (17.2 kB view details)

Uploaded Source

Built Distribution

uglypy-0.0.27-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file uglypy-0.0.27.tar.gz.

File metadata

  • Download URL: uglypy-0.0.27.tar.gz
  • Upload date:
  • Size: 17.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for uglypy-0.0.27.tar.gz
Algorithm Hash digest
SHA256 1a4be63a6494db5f23b95cf824ff02d941803c6408467385fbf5559ce00e99e7
MD5 051b5e66bd6b6ec6c4e25fdf26010831
BLAKE2b-256 5291e9726817dbd9853e8b71fd7b6500bcc6c29e71e85d5e33a601fb73d7e4b3

See more details on using hashes here.

File details

Details for the file uglypy-0.0.27-py3-none-any.whl.

File metadata

  • Download URL: uglypy-0.0.27-py3-none-any.whl
  • Upload date:
  • Size: 17.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for uglypy-0.0.27-py3-none-any.whl
Algorithm Hash digest
SHA256 c9cb2e9e056789c2d992991e98123ed1d40431f2ab81f99994081497b9c85d8b
MD5 7406635145332d1c622572c3a65e7b6d
BLAKE2b-256 ced7c4e9584ac22f52f52a6cc7ddbee7b1cd56d79df9a531725f54b34b7ab656

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page