Skip to main content

Ultra fast JSON encoder and decoder for Python (Internet Archive fork)

Project description

https://travis-ci.org/internetarchive/ultrajson.svg?branch=master

About this fork

We use this version at the Internet Archive. We have merged @vdmit11’s changes from https://github.com/dignio/ultrajson and the latest from upstream master, and may continue to make other tweaks.

To install:

$ pip install ujson-ia

Back to your regularly scheduled readme

UltraJSON is an ultra fast JSON encoder and decoder written in pure C with bindings for Python 2.5+ and 3.

For a more painless day to day C/C++ JSON decoder experience please checkout ujson4c, based on UltraJSON.

Please checkout the rest of the projects in the Ultra series:

Usage

May be used as a drop in replacement for most other JSON parsers for Python:

>>> import ujson
>>> ujson.dumps([{"key": "value"}, 81, True])
'[{"key":"value"},81,true]'
>>> ujson.loads("""[{"key": "value"}, 81, true]""")
[{u'key': u'value'}, 81, True]

Encoder options

encode_html_chars

Used to enable special encoding of “unsafe” HTML characters into safer Unicode sequences. Default is False:

>>> ujson.dumps("<script>John&Doe", encode_html_chars=True)
'"\\u003cscript\\u003eJohn\\u0026Doe"'
ensure_ascii

Limits output to ASCII and escapes all extended characters above 127. Default is true. If your end format supports UTF-8 setting this option to false is highly recommended to save space:

>>> ujson.dumps(u"\xe5\xe4\xf6")
'"\\u00e5\\u00e4\\u00f6"'
>>> ujson.dumps(u"\xe5\xe4\xf6", ensure_ascii=False)
'"\xc3\xa5\xc3\xa4\xc3\xb6"'
escape_forward_slashes

Controls whether forward slashes (/) are escaped. Default is True:

>>> ujson.dumps("http://esn.me")
'"http:\/\/esn.me"'
>>> ujson.dumps("http://esn.me", escape_forward_slashes=False)
'"http://esn.me"'
indent

Controls whether indention (“pretty output”) is enabled. Default is 0 (disabled):

>>> ujson.dumps({"foo": "bar"})
'{"foo":"bar"}'
>>> ujson.dumps({"foo": "bar"}, indent=4)
{
    "foo":"bar"
}
pre_encode_hook

Allows to provide a custom function which is called for every encoded Python object.

The hook function semantics is similar to the standard JSONEncoder.default() method, but the pre_encode_hook() is called before any other serialization attempts, while the default() is called when all other options didn’t work.

That allows to override already exsiting behavior and define custom serialization formats for things like dates. For example:

# Default behavior: datetime is converted to timestamp
>>> ujson.dumps({"a": "foo", "b": datetime.now()})
'{"a":"foo","b":1454523657}'

# Hook is involved: the datetime object is replaced with the .isoformat() string
>>> def hook(obj):
        return obj.isoformat() if hasattr(obj, 'isoformat') else obj

>>> ujson.dumps({"a": "foo", "b": datetime.now()}, pre_encode_hook=hook)
'{"a":"foo","b":"2016-02-03T18:21:55.351081"}'

The hook may be used to replace any object with any other arbitrary object before encoding it. However, it doesn’t cancel all further encoding transformations. For example, if you return a datetime object from the hook instead of a string, it will be transformed to a timestamp.

pre_encode_primitive

The boolean flag that indicates that pre_encode_hook() should also be called for Python objects that serialized to primitive JSON types (Number, String, Boolean, null).

Usually you don’t need to define any special serialization format for these types, so the flag is false by default.

Enabling this flag may produce huge amount of pre_encode_hook() calls (the hook will be called for every single JSON value) and thus affect the performance.

Decoders options

precise_float

Set to enable usage of higher precision (strtod) function when decoding string to double values. Default is to use fast but less precise builtin functionality:

>>> ujson.loads("4.56")
4.5600000000000005
>>> ujson.loads("4.56", precise_float=True)
4.5599999999999996
object_hook

A custom Python function which is called after a JSON object is decoded.

The hook semantics is similar to the standard JSONDecoder.object_hook() behavior. You may use it to transform a dictionary (the decoded JSON object) into a more specific object.

For example:

>>> def hook(obj):
        if '__complex__' in obj:
            return complex(obj['real'], obj['imag'])
        return obj

>>> ujson.loads('{"__complex__": true, "real": 1, "imag": 2}', object_hook=hook)
(1+2j)
string_hook

Similar to object_hook, but called for every decoded string.

Useful for deserializing objects like dates from their textual representations, e.g.:

>>> def hook(s):
        if s.startswith('__DATE'):
            return datetime.strptime(s, '__DATE: %Y-%m-%d')
        return s

>>> ujson.loads('{"a": "foo", "b": "__DATE: 2016-01-01"}', string_hook=hook)
{'a': 'foo', 'b': datetime.datetime(2016, 1, 1, 0, 0)}

Benchmarks

UltraJSON calls/sec compared to three other popular JSON parsers with performance gain specified below each.

Test machine:

Linux 3.13.0-66-generic x86_64 #108-Ubuntu SMP Wed Oct 7 15:20:27 UTC 2015

Versions:

  • CPython 2.7.6 (default, Jun 22 2015, 17:58:13) [GCC 4.8.2]

  • blist : 1.3.6

  • simplejson: 3.8.1

  • ujson : 1.34 (0c52200eb4e2d97e548a765d5f089858c41967b0)

  • yajl : 0.3.5

ujson

yajl

simplejson

json

Array with 256 doubles

encode

3508.19

5742.00

3232.38

3309.09

decode

25103.37

11257.83

11696.26

11871.04

Array with 256 UTF-8 strings

encode

3189.71

2717.14

2006.38

2961.72

decode

1354.94

630.54

356.35

344.05

Array with 256 strings

encode

18127.47

12537.39

12541.23

20001.00

decode

23264.70

12788.85

25427.88

9352.36

Medium complex object

encode

10519.38

5021.29

3686.86

4643.47

decode

9676.53

5326.79

8515.77

3017.30

Array with 256 True values

encode

105998.03

102067.28

44758.51

60424.80

decode

163869.96

78341.57

110859.36

115013.90

Array with 256 dict{string, int} pairs

encode

13471.32

12109.09

3876.40

8833.92

decode

16890.63

8946.07

12218.55

3350.72

Dict with 256 arrays with 256 dict{string, int} pairs

encode

50.25

46.45

13.82

29.28

decode

33.27

22.10

27.91

10.43

Dict with 256 arrays with 256 dict{string, int} pairs, outputting sorted keys

encode

27.19

7.75

2.39

Complex object

encode

577.98

387.81

470.02

decode

496.73

234.44

151.00

145.16

Versions:

  • CPython 3.4.3 (default, Oct 14 2015, 20:28:29) [GCC 4.8.4]

  • blist : 1.3.6

  • simplejson: 3.8.1

  • ujson : 1.34 (0c52200eb4e2d97e548a765d5f089858c41967b0)

  • yajl : 0.3.5

ujson

yajl

simplejson

json

Array with 256 doubles

encode

3477.15

5732.24

3016.76

3071.99

decode

23625.20

9731.45

9501.57

9901.92

Array with 256 UTF-8 strings

encode

1995.89

2151.61

1771.98

1817.20

decode

1425.04

625.38

327.14

305.95

Array with 256 strings

encode

25461.75

12188.64

13054.76

14429.81

decode

21981.31

17014.22

23869.48

22483.58

Medium complex object

encode

10821.46

4837.04

3114.04

4254.46

decode

7887.77

5126.67

4934.60

6204.97

Array with 256 True values

encode

100452.86

94639.42

46657.63

60358.63

decode

148312.69

75485.90

88434.91

116395.51

Array with 256 dict{string, int} pairs

encode

11698.13

8886.96

3043.69

6302.35

decode

10686.40

7061.77

5646.80

7702.29

Dict with 256 arrays with 256 dict{string, int} pairs

encode

44.26

34.43

10.40

21.97

decode

28.46

23.95

18.70

22.83

Dict with 256 arrays with 256 dict{string, int} pairs, outputting sorted keys

encode

33.60

6.94

22.34

Complex object

encode

432.30

351.47

379.34

decode

434.40

221.97

149.57

147.79

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ujson-ia-2.1.1.tar.gz (7.1 MB view details)

Uploaded Source

File details

Details for the file ujson-ia-2.1.1.tar.gz.

File metadata

  • Download URL: ujson-ia-2.1.1.tar.gz
  • Upload date:
  • Size: 7.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for ujson-ia-2.1.1.tar.gz
Algorithm Hash digest
SHA256 efa6dd3f2fae061a53c9fb4c4faec447ac46c2bac53d963844aac8241c3c07ab
MD5 c92d1e3ce45c89adfab3a5ad134a94f0
BLAKE2b-256 e501bdeec862af2739d52f7fffb19baa99362cdbf7e2b9906d999f57f6ff618c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page