A scikit-learn compatible neural network implementation
Project description
ultimate
A scikit-learn compatible neural network implementation
Installation
pip install ultimate
Why Ultimate?
- Support feature importance
- Support missing values
- Support am2x/a2m2x activation functions
- Support softmax/hardmax/mse/hardmse loss functions
- Support fc/add/conv/star operations
How To Use?
# let's use a simple example to learn how to use from ultimate.mlp import MLP import numpy as np # generate sample X = np.linspace(-np.pi, np.pi, num=5000).reshape(-1, 1) Y = np.sin(X) print(X.shape, Y.shape) # fit and predict mlp = MLP(layer_size=[X.shape[1], 8, 8, 8, 1], rate_init=0.02, loss_type="mse", epoch_train=100, epoch_decay=10, verbose=1) mlp.fit(X, Y) pred = mlp.predict(X) # show the result import matplotlib.pyplot as plt plt.plot(X, pred) plt.show()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
ultimate-2.75.2-py2.py3-none-any.whl
(104.0 kB
view details)
File details
Details for the file ultimate-2.75.2-py2.py3-none-any.whl
.
File metadata
- Download URL: ultimate-2.75.2-py2.py3-none-any.whl
- Upload date:
- Size: 104.0 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 014751bba910f213b9d4376903fe7e35db436b3cc50f371a0066839f2efaeaf4 |
|
MD5 | 55d4f0bf1281860caf787c0e5acfee34 |
|
BLAKE2b-256 | 547055d5013a71757052d96e470b608569bfde252b2d150d42f3b882dc07f217 |