Skip to main content

Ἀνατομή (Anatome) is a PyTorch library to analyze representation of neural networks

Project description

anatome

Ἀνατομή is a PyTorch library to analyze internal representation of neural networks

This project is under active development and the codebase is subject to change.

Note the name of the pypi package is ultimate-anatome but the python import is done with the original name import anatome. Test via:

python -c "import anatome.my_utils as my_utils;my_utils.hello()"
python -c "import anatome.my_utils as my_utils;my_utils.my_anatome_test()"

Credit to original library: https://github.com/moskomule/anatome

Installation

If you are going to use a gpu the do this first before continuing (or check the offical website: https://pytorch.org/get-started/locally/):

pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

Otherwise, just doing the follwoing should work.

pip install ultimate-anatome

Manual installation [for Development]

To use code first get the code from this repo (e.g. fork it on github):

git clone git@github.com:brando90/ultimate-anatome.git

Then install it in development mode in your python env with python >=3.9. E.g. create your env with conda:

conda create -n ultimate_anatome_env python=3.9
conda activate ultimate_anatome_env

Then install code in edibable mode and all it's depedencies with pip in the currently activated conda environment:

pip install -e ~/ultimate-anatome

Available Tools

Representation Similarity

To measure the similarity of learned representation, anatome.SimilarityHook is a useful tool. Currently, the following methods are implemented.

import torch
from torchvision.models import resnet18
from anatome import DistanceHook
from anatome.my_utils import remove_hook

model = resnet18()
hook1 = DistanceHook(model, "layer3.0.conv1")
hook2 = DistanceHook(model, "layer3.0.conv2")
model.eval()
with torch.no_grad():
    model(torch.randn(128, 3, 224, 224))
# downsampling to (size, size) may be helpful
hook1.distance(hook2, size=8)
hook1.clear()
hook2.clear()
remove_hook(model, hook1)
remove_hook(model, hook2)

or to test do:

from anatome.my_utils import my_anatome_test
my_anatome_test()

Loss Landscape Visualization

from anatome import landscape2d

x, y, z = landscape2d(resnet18(),
                      data,
                      F.cross_entropy,
                      x_range=(-1, 1),
                      y_range=(-1, 1),
                      step_size=0.1)
imshow(z)

Fourier Analysis

  • Yin et al. NeurIPS 2019 etc.,
from anatome import fourier_map

map = fourier_map(resnet18(),
                  data,
                  F.cross_entropy,
                  norm=4)
imshow(map)

Citation

If you use this implementation in your research, please conser citing my version of anatome:

@software{miranda2021ultimate_anatome,
    author={Brando Miranda},
    title={My Anatome, a PyTorch library to analyze internal representation of neural networks},
    url={https://github.com/brando90/my_anatome},
    year={2021}
}

and the original version:

@software{hataya2020anatome,
    author={Ryuichiro Hataya},
    title={anatome, a PyTorch library to analyze internal representation of neural networks},
    url={https://github.com/moskomule/anatome},
    year={2020}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ultimate-anatome-0.0.4.tar.gz (12.5 kB view details)

Uploaded Source

Built Distribution

ultimate_anatome-0.0.4-py3-none-any.whl (12.0 kB view details)

Uploaded Python 3

File details

Details for the file ultimate-anatome-0.0.4.tar.gz.

File metadata

  • Download URL: ultimate-anatome-0.0.4.tar.gz
  • Upload date:
  • Size: 12.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for ultimate-anatome-0.0.4.tar.gz
Algorithm Hash digest
SHA256 6cf07217824d09d53bb4f6ed3343b2851eacffe9f070a6e1cd545a2179748b10
MD5 8eda0975b1351b53f8376cd92739e3d1
BLAKE2b-256 85df9231eed11c66db764103307c4341233f3587495861110899e9cbc237924e

See more details on using hashes here.

File details

Details for the file ultimate_anatome-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: ultimate_anatome-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 12.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for ultimate_anatome-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 45923734408e0774b9e5932c4a556c00d3df1de73a9a72c71ccc91a66d533d4e
MD5 aa12b5d9e7784203428bd7e0eb485602
BLAKE2b-256 b596363abb6916e2ee82f7670afa55047e7675f32aff939d5c7bbd1bca193fc5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page