Ἀνατομή (Anatome) is a PyTorch library to analyze representation of neural networks
Project description
anatome
Ἀνατομή is a PyTorch library to analyze internal representation of neural networks
This project is under active development and the codebase is subject to change.
Note the name of the pypi package is ultimate-anatome
but the python import is done with
the original name import anatome
.
Test via:
python -c "import anatome.my_utils as my_utils;my_utils.hello()"
python -c "import anatome.my_utils as my_utils;my_utils.my_anatome_test()"
Credit to original library: https://github.com/moskomule/anatome
Installation
If you are going to use a gpu the do this first before continuing (or check the offical website: https://pytorch.org/get-started/locally/):
pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
Otherwise, just doing the follwoing should work.
pip install ultimate-anatome
Manual installation [for Development]
To use code first get the code from this repo (e.g. fork it on github):
git clone git@github.com:brando90/ultimate-anatome.git
Then install it in development mode in your python env with python >=3.9. E.g. create your env with conda:
conda create -n ultimate_anatome_env python=3.9
conda activate ultimate_anatome_env
Then install code in edibable mode and all it's depedencies with pip in the currently activated conda environment:
pip install -e ~/ultimate-anatome
Available Tools
Representation Similarity
To measure the similarity of learned representation, anatome.SimilarityHook
is a useful tool. Currently, the following
methods are implemented.
- Raghu et al. NIPS2017 SVCCA
- Marcos et al. NeurIPS2018 PWCCA
- Kornblith et al. ICML2019 Linear CKA
- Ding et al. arXiv Orthogonal Procrustes distance
import torch
from torchvision.models import resnet18
from anatome import DistanceHook
from anatome.my_utils import remove_hook
model = resnet18()
hook1 = DistanceHook(model, "layer3.0.conv1")
hook2 = DistanceHook(model, "layer3.0.conv2")
model.eval()
with torch.no_grad():
model(torch.randn(128, 3, 224, 224))
# downsampling to (size, size) may be helpful
hook1.distance(hook2, size=8)
hook1.clear()
hook2.clear()
remove_hook(model, hook1)
remove_hook(model, hook2)
or to test do:
from anatome.my_utils import my_anatome_test
my_anatome_test()
Loss Landscape Visualization
from anatome import landscape2d
x, y, z = landscape2d(resnet18(),
data,
F.cross_entropy,
x_range=(-1, 1),
y_range=(-1, 1),
step_size=0.1)
imshow(z)
Fourier Analysis
- Yin et al. NeurIPS 2019 etc.,
from anatome import fourier_map
map = fourier_map(resnet18(),
data,
F.cross_entropy,
norm=4)
imshow(map)
Citation
If you use this implementation in your research, please conser citing my version of anatome:
@software{miranda2021ultimate_anatome,
author={Brando Miranda},
title={My Anatome, a PyTorch library to analyze internal representation of neural networks},
url={https://github.com/brando90/my_anatome},
year={2021}
}
and the original version:
@software{hataya2020anatome,
author={Ryuichiro Hataya},
title={anatome, a PyTorch library to analyze internal representation of neural networks},
url={https://github.com/moskomule/anatome},
year={2020}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ultimate-anatome-0.0.5.tar.gz
.
File metadata
- Download URL: ultimate-anatome-0.0.5.tar.gz
- Upload date:
- Size: 16.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7bdd5c5bea8c28a25d6ff08f568a049d37ec9d012d1b2af22af873c2633828b6 |
|
MD5 | c13c2fa6ff7dee7dde0ea2b6afe91a20 |
|
BLAKE2b-256 | 9f031bdb24269c2bedfa8003cfb97d64aa44e63834f970ab2028be641c4609e9 |
File details
Details for the file ultimate_anatome-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: ultimate_anatome-0.0.5-py3-none-any.whl
- Upload date:
- Size: 22.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 64309487e95310bc56ea4fb73145e0e2dc1f81f5853cdc756724072f1efbe510 |
|
MD5 | fa8bba0ac79871e50de38816c63eb701 |
|
BLAKE2b-256 | 0485a63903d012537d7aab9507920f7d4f01e88e7846474d76fa79018cd8a4e5 |