Skip to main content

text detection + text recognition

Project description

Quickstart

pip install torch==1.7.0+cu101 torchvision==0.8.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install --upgrade ultocr  # install our project with package

# for inference phase
from ultocr.inference import OCR
from PIL import Image
model = OCR(det_model='DB', reg_model='MASTER')
image = Image.open('..')  # ..is the path of image
result = model.get_result(image)

Or view in google colab demo

Install

git clone https://github.com/cuongngm/text-in-image
pip install torch==1.7.0+cu101 torchvision==0.8.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
bash scripts/download_weights.sh

Prepare data

Pretrained model

Model size(MB)
DB 140
MASTER 261

Train

Custom params in each config file of config folder then:

Single gpu training:

python train.py --config config/db_resnet50.yaml --use_dist False
# tracking with mlflow
mlflow run text-in-image -P config=config/db_resnet50.yaml -P use_dist=False -P device=1

Multi gpu training:

# assume we have 2 gpu
python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=2 --master_addr=127.0.0.1 --master_post=5555 train.py --config config/db_resnet50.yaml

Serve and Inference

python run.py

Then, open your browser at http://127.0.0.1:8000/docs. Request url of the image, the result is as follows:

Todo

  • Multi gpu training
  • Tracking experiments with Mlflow
  • Model serving with FastAPI
  • Add more text detection and recognition model

Reference

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ultocr-0.3.1.tar.gz (43.4 kB view details)

Uploaded Source

File details

Details for the file ultocr-0.3.1.tar.gz.

File metadata

  • Download URL: ultocr-0.3.1.tar.gz
  • Upload date:
  • Size: 43.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.51.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.12

File hashes

Hashes for ultocr-0.3.1.tar.gz
Algorithm Hash digest
SHA256 5e19931fe841d5e0d5797dc7ba6decf0270462a8dc16ca6778c7d32806548c58
MD5 2af124eda5970e5561336fd5626421c0
BLAKE2b-256 3615043a5ce90f6faab5a24aba42f762dad1c018bf717f7f647ea4e8c1078f7e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page