Skip to main content

HuggingFace utilities for Ultralytics/YOLOv8.

Project description

ultralytics+

Extra features for ultralytics/ultralytics.

installation

pip install ultralyticsplus

push to 🤗 hub

ultralyticsplus --exp_dir runs/detect/train --hf_model_id HF_USERNAME/MODELNAME

load from 🤗 hub

from ultralyticsplus import YOLO, render_result

# load model
model = YOLO('HF_USERNAME/MODELNAME')

# set model parameters
model.overrides['conf'] = 0.25  # NMS confidence threshold
model.overrides['iou'] = 0.45  # NMS IoU threshold
model.overrides['agnostic_nms'] = False  # NMS class-agnostic
model.overrides['max_det'] = 1000  # maximum number of detections per image

# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model.predict(image, imgsz=640):

# parse results
result = results[0]
boxes = result.boxes.xyxy # x1, y1, x2, y2
scores = result.boxes.conf
categories = result.boxes.cls
scores = result.probs # for classification models
masks = result.masks # for segmentation models

# show results on image
render = render_result(model=model, image=image, result=result)
render.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ultralyticsplus-0.0.16.tar.gz (10.4 kB view details)

Uploaded Source

Built Distribution

ultralyticsplus-0.0.16-py3-none-any.whl (11.2 kB view details)

Uploaded Python 3

File details

Details for the file ultralyticsplus-0.0.16.tar.gz.

File metadata

  • Download URL: ultralyticsplus-0.0.16.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for ultralyticsplus-0.0.16.tar.gz
Algorithm Hash digest
SHA256 e68674c06adb2e743116bfc685c3a35fd668125310aadf332dfaa563d8b8ca83
MD5 a0e88d8e6c9775d9bdfd3a51424d80a7
BLAKE2b-256 96a426fc8dd833dbc2f4bae04e257da24a534b68c308ba8c50f323735dbdc425

See more details on using hashes here.

Provenance

File details

Details for the file ultralyticsplus-0.0.16-py3-none-any.whl.

File metadata

File hashes

Hashes for ultralyticsplus-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 9943d0583f81e7ce12a652295100f3ab2e450c5d3e474c985469665efcb1d4cf
MD5 bb3a408a951066693eb47a75da4cd44b
BLAKE2b-256 22c384586e43e745c585a60f8887732471cbb96c806a9b7e55a2b89f538b9a75

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page