HuggingFace utilities for Ultralytics/YOLOv8.
Project description
ultralytics+
Extra features for ultralytics/ultralytics.
installation
pip install ultralyticsplus
push to 🤗 hub
ultralyticsplus --exp_dir runs/detect/train --hf_model_id HF_USERNAME/MODELNAME
load from 🤗 hub
from ultralyticsplus import YOLO, render_predictions
# load model
model = YOLO('HF_USERNAME/MODELNAME')
# set model parameters
model.overrides['conf'] = 0.25 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
for result in model.predict(img, imgsz=640, return_outputs=True):
print(result) # [x1, y1, x2, y2, conf, class]
render = render_predictions(model, img=img, det=result["det"])
render.show()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ultralyticsplus-0.0.3.tar.gz
(7.2 kB
view details)
Built Distribution
File details
Details for the file ultralyticsplus-0.0.3.tar.gz
.
File metadata
- Download URL: ultralyticsplus-0.0.3.tar.gz
- Upload date:
- Size: 7.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b8b970143ef92bb18c44fd5dd5a571313ddc38677235c63553b9b2c28f606cb1 |
|
MD5 | 99dbf62a236e9b54196bdd2c7c12d1a9 |
|
BLAKE2b-256 | b0acd21cb2d7029dc9eb459dbafbf6c33979317e49405018598ceef27851ba81 |
Provenance
File details
Details for the file ultralyticsplus-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: ultralyticsplus-0.0.3-py3-none-any.whl
- Upload date:
- Size: 8.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 01e2be6b30a2eb29ace81b16fc10e9715dfc1bc0b4308245339ec5e13a921ca3 |
|
MD5 | 1629134c5ec1c82e463cabb4d65b1027 |
|
BLAKE2b-256 | 2b674e72876a7bc589d34eb4539aaea1ec7bf1afd5d2548d3ec3e23cb12c3d80 |