Skip to main content

UNet Segmentation Metrics

Project description

UNet segmentation metrics

WORK IN PROGRESS

Simple Python 3 tools to assess the performance of UNet segmentation networks (or any other segmentation method) by comparing the prediction to a ground truth image.

Use it to calculate:

  • Jaccard metric for object detection
  • Intersection over Union (IoU) for object segmentation accuracy
  • Localization (positional) error for estimating MOTP during tracking
  • Pixel identity

TODO:

  • Add strict matching with IoU threshold
  • Add confusion matrix for multi-label/classification type tasks

Single image usage

import umetrix
from skimage.io import imread

y_true = imread('true.tif')
y_pred = imread('pred.tif')


# can now make the calculation strict, by only considering objects that have
# an IoU above a theshold as being true positives
result = umetrix.calculate(
    y_true,
    y_pred,
    strict=True,
    iou_threshold=0.5
)

print(result.results)

returns:

============================
 Segmentation Metrics (n=1)
============================
Strict: True (IoU > 0.5)
n_true_labels: 354
n_pred_labels: 362
n_true_positives: 345
n_false_positives: 10
n_false_negatives: 0
IoU: 0.999
Jaccard: 0.972
pixel_identity: 0.998
localization_error: 0.010

Batch processing

import umetrix

# provide a list of file pairs ('true', 'prediction')
files = [
    ('true0.tif', 'pred0.tif'),
    ('true1.tif', 'pred1.tif'),
    ('true2.tif', 'pred2.tif')
]

batch_result = umetrix.batch(files)

Returns aggregate statistics over the batch. Jaccard index is calculated over all found objects, while other metrics are the average IoU etc.

Installation

  1. First clone the repo:
$ git clone https://github.com/quantumjot/unet_segmentation_metrics.git
  1. (Optional, but advised) Create a conda environment:
$ conda create -n umetrix python=3.9
$ conda activate umetrix
  1. Install the package
$ cd unet_segmentation_metrics
$ pip install .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

umetrix-0.2.0.tar.gz (226.9 kB view details)

Uploaded Source

Built Distribution

umetrix-0.2.0-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file umetrix-0.2.0.tar.gz.

File metadata

  • Download URL: umetrix-0.2.0.tar.gz
  • Upload date:
  • Size: 226.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for umetrix-0.2.0.tar.gz
Algorithm Hash digest
SHA256 b79e7812246e4a4c10cf13a77eeed607c8a52969cfb224d48c7a5f15e222234e
MD5 405145268cc55181ba2da1b0f3f55fcd
BLAKE2b-256 335504ddda3f0c8bb8a296680006c489dea57563ad1b723c460babb363f08b84

See more details on using hashes here.

File details

Details for the file umetrix-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: umetrix-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 9.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for umetrix-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0df225ea5a7ae0a77992b4234267299418d1bdacb76f492c84305e9e457d2de8
MD5 a4621ed8daa75e9b64c394364f3b5ff1
BLAKE2b-256 b00095c2ca9bd7de92486a6ab384f07548e783b4f9ab317413df25c5cd08a4d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page