Skip to main content

Package for estimating UMI counts in Transcript Tag Counting data.

Project description

# umis

**umis** provides tools for estimating expression in RNA-Seq data which performs
sequencing of end tags of trancsript, and incorporate molecular tags to
correct for amplification bias.

There are three steps in this process.

1. Formatting reads
2. Pseodomapping to cDNAs
3. Counting molecular identifiers

## 1. Formatting reads

We want to strip out all non-biological segments of the sequenced reads for
the sake of mapping. While also keeping this information for later use. We
consider non-biological information such as Cellular Barcode and Molecular
Barcode. To later be able to extract the optional CB and the MB these are put
in the read header, with the followign format.

@HWI-ST808:130:H0B8YADXX:1:1101:2088:2222:CELL_GGTCCA:UMI_CCCT
AGGAAGATGGAGGAGAGAAGGCGGTGAAAGAGACCTGTAAAAAGCCACCGN
+
@@@DDBD>=AFCF+<CAFHDECII:DGGGHGIGGIIIEHGIIIGIIDHII#

The command `umis fastqtransform` is for transforming a (pair of) read(s) to
this format based on a _transform file_. The transform file is a json file
which has a Python flavored regular expression for each read, made to extract
the necessary components of the reads.

## 2. Pseodomapping to cDNAs

This is done by pseduoaligners, either Kallisto or RapMap. The SAM file output
from these tools need to be saved.

## 3. Counting molecular identifiers

The final step is to infer which cDNA was the origin of the tag a UMI was
attached to. We use the pseudoalignments to the cDNAs, and consider a tag
assigned to a cDNA as a partial _evidence_ for a (cDNA, UMI) pairing. For
actual counting, we only count unique UMIs for (gene, UMI) pairings with
sufficient evidence.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

umis-0.2.0.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

umis-0.2.0-py2.py3-none-any.whl (6.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file umis-0.2.0.tar.gz.

File metadata

  • Download URL: umis-0.2.0.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for umis-0.2.0.tar.gz
Algorithm Hash digest
SHA256 21438b02ee9af86eea999b9e0d7b508add30f1dc50f3ade0fbfa8b4663fced3d
MD5 0689d36024a2750f811de062e5d9167a
BLAKE2b-256 d86b89d23d5a120173124d5a3bd75355d0798d7dcda9ffc4ff59eb7880fefbc1

See more details on using hashes here.

File details

Details for the file umis-0.2.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for umis-0.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0d2075d26da9c62ea5bc21c0a7e99f031aaa8df86f9b604784468491061d95d2
MD5 a31b3f36e138ad70e5007e3ddbe15f23
BLAKE2b-256 7d55cb49accfde920a1face60c23518b6e2bcee1c7e696502c771ff4cc5391c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page