Skip to main content

High-quality Machine Translation Evaluation

Project description



License GitHub stars PyPI Code Style

Note: This is a Pre-Release Version. We are currently working on results for the WMT2020 shared task and will likely update the repository in the beginning of October (after the shared task results).

Quick Installation

We recommend python 3.6 to run COMET.

Detailed usage examples and instructions can be found in the Full Documentation.

Simple installation from PyPI

pip install unbabel-comet

To develop locally:

git clone https://github.com/Unbabel/COMET
pip install -r requirements.txt
pip install -e .

Scoring MT outputs:

Via Bash:

Examples from WMT20:

echo -e "Dem Feuer konnte Einhalt geboten werden\nSchulen und Kindergärten wurden eröffnet." >> src.de
echo -e "The fire could be stopped\nSchools and kindergartens were open" >> hyp.en
echo -e "They were able to control the fire.\nSchools and kindergartens opened" >> ref.en
comet score -s src.de -h hyp.en -r ref.en

You can export your results to a JSON file using the --to_json flag and select another model/metric with --model.

comet score -s src.de -h hyp.en -r ref.en --model wmt-large-hter-estimator --to_json segments.json

Via Python:

from comet.models import download_model
model = download_model("wmt-large-da-estimator-1719")
data = [
    {
        "src": "Dem Feuer konnte Einhalt geboten werden",
        "mt": "The fire could be stopped",
        "ref": "They were able to control the fire."
    },
    {
        "src": "Schulen und Kindergärten wurden eröffnet.",
        "mt": "Schools and kindergartens were open",
        "ref": "Schools and kindergartens opened"
    }
]
model.predict(data)

Simple Pythonic way to convert list or segments to model inputs:

source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]
hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]
reference = ["They were able to control the fire.", "Schools and kindergartens opened"]

data = {"src": source, "mt": hypothesis, "ref": reference}
data = [dict(zip(data, t)) for t in zip(*data.values())]

model.predict(data)

Note: Using the python interface you will get a list of segment-level scores. You can obtain the corpus-level score by averaging the segment-level scores

Model Zoo:

Model Description
wmt-large-da-estimator-1719 RECOMMENDED: Estimator model build on top of XLM-R (large) trained on DA from WMT17, WMT18 and WMT19
wmt-base-da-estimator-1719 Estimator model build on top of XLM-R (base) trained on DA from WMT17, WMT18 and WMT19
wmt-large-hter-estimator Estimator model build on top of XLM-R (large) trained to regress on HTER.
wmt-base-hter-estimator Estimator model build on top of XLM-R (base) trained to regress on HTER.
emnlp-base-da-ranker Translation ranking model that uses XLM-R to encode sentences. This model was trained with WMT17 and WMT18 Direct Assessments Relative Ranks (DARR).

QE-as-a-metric:

Model Description
wmt-large-qe-estimator-1719 Quality Estimator model build on top of XLM-R (large) trained on DA from WMT17, WMT18 and WMT19.

Train your own Metric:

Instead of using pretrained models your can train your own model with the following command:

comet train -f {config_file_path}.yaml

Supported encoders:

Tensorboard:

Launch tensorboard with:

tensorboard --logdir="experiments/"

Download Command:

To download public available corpora to train your new models you can use the download command. For example to download the APEQUEST HTER corpus just run the following command:

comet download -d apequest --saving_path data/

unittest:

pip install coverage

In order to run the toolkit tests you must run the following command:

coverage run --source=comet -m unittest discover
coverage report -m

Publications

@inproceedings{rei-etal-2020-comet,
    title = "{COMET}: A Neural Framework for {MT} Evaluation",
    author = "Rei, Ricardo  and
      Stewart, Craig  and
      Farinha, Ana C  and
      Lavie, Alon",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",
    pages = "2685--2702",
}
@inproceedings{rei-EtAl:2020:WMT,
  author    = {Rei, Ricardo  and  Stewart, Craig  and  Farinha, Ana C  and  Lavie, Alon},
  title     = {Unbabel's Participation in the WMT20 Metrics Shared Task},
  booktitle      = {Proceedings of the Fifth Conference on Machine Translation},
  month          = {November},
  year           = {2020},
  address        = {Online},
  publisher      = {Association for Computational Linguistics},
  pages     = {909--918},
}
@inproceedings{stewart-etal-2020-comet,
    title = "{COMET} - Deploying a New State-of-the-art {MT} Evaluation Metric in Production",
    author = "Stewart, Craig  and
      Rei, Ricardo  and
      Farinha, Catarina  and
      Lavie, Alon",
    booktitle = "Proceedings of the 14th Conference of the Association for Machine Translation in the Americas (Volume 2: User Track)",
    month = oct,
    year = "2020",
    address = "Virtual",
    publisher = "Association for Machine Translation in the Americas",
    url = "https://www.aclweb.org/anthology/2020.amta-user.4",
    pages = "78--109",
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unbabel-comet-0.0.6.post1.tar.gz (43.7 kB view details)

Uploaded Source

File details

Details for the file unbabel-comet-0.0.6.post1.tar.gz.

File metadata

  • Download URL: unbabel-comet-0.0.6.post1.tar.gz
  • Upload date:
  • Size: 43.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.6.9

File hashes

Hashes for unbabel-comet-0.0.6.post1.tar.gz
Algorithm Hash digest
SHA256 d66e5ed75533f6b8f48c1bd56f5b0c30f33683a6e6e935963d38ecc00ae85647
MD5 4c6f7db6186726df2d00188a9b470281
BLAKE2b-256 4d93f7dce437b57670aef01a5515aecec9a51bfc8904e9bb5961371998bc37ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page