Skip to main content

A Python SDK by LUCIT to convert received raw data from crypto exchange API endpoints into well-formed python dictionaries.

Project description

Get a UNICORN Binance Suite License

GitHub Release GitHub Downloads Anaconda Release Anaconda Downloads PyPi Release PyPi Downloads License Supported Python Version PyPI - Status codecov CodeQL Unit Tests Build and Publish GH+PyPi Build and Publish Anaconda Read the Docs Read How To`s Github Telegram Gitter Get Free Professional Support ChatGPT UNICORN Binance Suite Assistant

LUCIT-UNICORNFY-Banner

UnicornFy

Supported Exchanges | Installation | Change Log | Documentation | Examples | Wiki | Social | Notifications | Bugs | Contributing | Disclaimer | Commercial Support

A Python SDK by LUCIT to convert received raw data from crypto exchange API endpoints into well-formed python dictionaries.

Part of 'UNICORN Binance Suite'.

Get help with the integration of the UNICORN Binance Suite modules from the UNICORN Binance Suite Assistant GPT or a real human LUCIT employee.

import unicorn_fy

received_stream_data_json = {"stream": "btcusdt@trade",
                             "data": {"e": "trade",
                                      "E": 1556876873656,
                                      "s": "BTCUSDT",
                                      "t": 117727701,
                                      "p": "5786.76000000",
                                      "q": "0.03200500",
                                      "b": 341831847,
                                      "a": 341831876,
                                      "T": 1556876873648,
                                      "m": True,
                                      "M": True}}

ufy = unicorn_fy.UnicornFy()

unicorn_fied_stream_data = ufy.binance_com_websocket(received_stream_data_json)
print(unicorn_fied_stream_data)

Output:

{'stream_type': 'btcusdt@trade', 'event_type': 'trade', 'event_time': 1556876873656, 'symbol': 'BTCUSDT',
 'trade_id': 117727701, 'price': '5786.76000000', 'quantity': '0.03200500', 'buyer_order_id': 341831847,
 'seller_order_id': 341831876, 'trade_time': 1556876873648, 'is_market_maker': True, 'ignore': True,
 'unicorn_fied': ['binance', '0.14.2']}

This lib is integrated into UNICORN Binance WebSocket API and can be activated by setting parameter output_default of BinanceWebSocketApiManager() to UnicornFy or for specific streams with the parameter output of create_stream() to UnicornFy.

Get the right logger:

logging.getLogger("unicorn_fy")

Supported Exchanges

Websockets

Exchange Docs Status
Binance (API) binance_com_websocket(stream_data_json) STABLE
Binance Testnet (API) binance_com_websocket(stream_data_json) STABLE
Binance Margin (API) binance_com_margin_websocket(stream_data_json) STABLE
Binance Margin Testnet (API) binance_com_margin_websocket(stream_data_json) STABLE
Binance Isolated Margin (API) binance_com_isolated_margin_websocket(stream_data_json) STABLE
Binance Isolated Margin Testnet (API) binance_com_isolated_margin_websocket(stream_data_json) STABLE
Binance Futures (API) binance_com_futures_websocket(stream_data_json) STABLE
Binance Futures Testnet (API) binance_com_futures_websocket(stream_data_json) STABLE
Binance Coin Futures (API) binance_com_coin_futures_websocket(stream_data_json) NEEDS_YOUR_HELP
Binance Coin Futures Testnet (API) binance_com_coin_futures_websocket(stream_data_json) NEEDS_YOUR_HELP
Binance Jersey (API) binance_je_websocket(stream_data_json) STABLE
Binance US (API) binance_us_websocket(stream_data_json) STABLE
Binance TR (API) trbinance_com_websocket(stream_data_json) STABLE
Binance JEX (API) jex_com_websocket(stream_data_json) STABLE
Binance DEX (API) binance_org_websocket(stream_data_json) NEEDS_YOUR_HELP
Binance DEX Testnet (API) binance_org_websocket(stream_data_json) NEEDS_YOUR_HELP

REST

  • none

If you like the project, please star it on GitHub!

Installation and Upgrade

The module requires Python 3.7.0 or above.

For Anaconda we offer packages only from Python version 3.8 and higher.

For the PyPy interpreter we offer packages only from Python version 3.9 and higher.

The current dependencies are listed here.

If you run into errors during the installation take a look here.

Packages are created automatically with GitHub Actions

When a new release is to be created, we start two GitHubActions:

Both start virtual Windows/Linux/Mac servers provided by GitHub in the cloud with preconfigured environments and create the respective compilations and stub files, pack them into wheels and conda packages and then publish them on GitHub, PYPI and Anaconda. This is a transparent method that makes it possible to trace the source code behind a compilation.

A Cython binary, PyPy or source code based CPython wheel of the latest version with pip from PyPI

Our Cython and PyPy Wheels are available on PyPI, these wheels offer significant advantages for Python developers:

  • Performance Boost with Cython Wheels: Cython is a programming language that supplements Python with static typing and C-level performance. By compiling Python code into C, Cython Wheels can significantly enhance the execution speed of Python code, especially in computationally intensive tasks. This means faster runtimes and more efficient processing for users of our package.

  • PyPy Wheels for Enhanced Efficiency: PyPy is an alternative Python interpreter known for its speed and efficiency. It uses Just-In-Time (JIT) compilation, which can dramatically improve the performance of Python code. Our PyPy Wheels are tailored for compatibility with PyPy, allowing users to leverage this speed advantage seamlessly.

Both Cython and PyPy Wheels on PyPI make the installation process simpler and more straightforward. They ensure that you get the optimized version of our package with minimal setup, allowing you to focus on development rather than configuration.

On Raspberry Pi and other architectures for which there are no pre-compiled versions, the package can still be installed with PIP. PIP then compiles the package locally on the target system during installation. Please be patient, this may take some time!

Installation

pip install unicorn-fy

Update

pip install unicorn-fy --upgrade

A Conda Package of the latest version with conda from Anaconda

The unicorn-fy package is also available as a Cython version for the linux-64, osx-64 and win-64 architectures with Conda through the lucit channel.

For optimal compatibility and performance, it is recommended to source the necessary dependencies from the conda-forge channel.

Installation

conda config --add channels conda-forge
conda config --add channels lucit
conda install -c lucit unicorn-fy

Update

conda update -c lucit unicorn-fy

From source of the latest release with PIP from Github

Linux, macOS, ...

Run in bash:

pip install https://github.com/LUCIT-Systems-and-Development/unicorn-fy/archive/$(curl -s https://api.github.com/repos/lucit-systems-and-development/unicorn-fy/releases/latest | grep -oP '"tag_name": "\K(.*)(?=")').tar.gz --upgrade

Windows

Use the below command with the version (such as 0.14.2) you determined here:

pip install https://github.com/LUCIT-Systems-and-Development/unicorn-fy/archive/0.14.2.tar.gz --upgrade

From the latest source (dev-stage) with PIP from GitHub

This is not a release version and can not be considered to be stable!

pip install https://github.com/LUCIT-Systems-and-Development/unicorn-fy/tarball/master --upgrade

Conda environment, Virtualenv or plain Python

Download the latest release or the current master branch and use:

  • ./environment.yml
  • ./meta.yaml
  • ./pyproject.toml
  • ./requirements.txt
  • ./setup.py

Change Log

https://unicorn-fy.docs.lucit.tech/changelog.html

Documentation

Examples

Project Homepage

https://www.lucit.tech/unicorn-fy.html

Wiki

https://github.com/LUCIT-Systems-and-Development/unicorn-fy/wiki

Social

Receive Notifications

To receive notifications on available updates you can watch the repository on GitHub, write your own script with using is_update_available() or you use the monitoring API service.

Follow us on GitHub, Medium, YouTube, LinkedIn, X or Facebook!

How to report Bugs or suggest Improvements?

List of planned features - click thumbs-up if you need one of them or suggest a new feature!

Before you report a bug, try the latest release. If the issue still exists, provide the error trace, OS and python version and explain how to reproduce the error. A demo script is appreciated.

If you dont find an issue related to your topic, please open a new issue: https://github.com/LUCIT-Systems-and-Development/unicorn-fy/issues

Report a security bug!

Contributing

UnicornFy is an open source project which welcomes contributions which can be anything from simple documentation fixes and reporting dead links to new features. To contribute follow this guide.

Contributors

Contributors

We love open source!

Disclaimer

This project is for informational purposes only. You should not construe this information or any other material as legal, tax, investment, financial or other advice. Nothing contained herein constitutes a solicitation, recommendation, endorsement or offer by us or any third party provider to buy or sell any securities or other financial instruments in this or any other jurisdiction in which such solicitation or offer would be unlawful under the securities laws of such jurisdiction.

If you intend to use real money, use it at your own risk!

Under no circumstances will we be responsible or liable for any claims, damages, losses, expenses, costs or liabilities of any kind, including but not limited to direct or indirect damages for loss of profits.

Commercial Support

Get professional and fast support

Do you need a developer, operator or consultant? Contact us for a non-binding initial consultation!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unicorn_fy-0.14.2.tar.gz (198.4 kB view details)

Uploaded Source

Built Distributions

unicorn_fy-0.14.2-pp310-pypy310_pp73-win_amd64.whl (308.2 kB view details)

Uploaded PyPy Windows x86-64

unicorn_fy-0.14.2-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (323.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

unicorn_fy-0.14.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (322.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

unicorn_fy-0.14.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (312.8 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

unicorn_fy-0.14.2-pp39-pypy39_pp73-win_amd64.whl (308.2 kB view details)

Uploaded PyPy Windows x86-64

unicorn_fy-0.14.2-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (324.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

unicorn_fy-0.14.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (322.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

unicorn_fy-0.14.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (312.8 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

unicorn_fy-0.14.2-cp312-cp312-win_amd64.whl (333.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

unicorn_fy-0.14.2-cp312-cp312-win32.whl (317.5 kB view details)

Uploaded CPython 3.12 Windows x86

unicorn_fy-0.14.2-cp312-cp312-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

unicorn_fy-0.14.2-cp312-cp312-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

unicorn_fy-0.14.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

unicorn_fy-0.14.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

unicorn_fy-0.14.2-cp312-cp312-macosx_10_9_x86_64.whl (353.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

unicorn_fy-0.14.2-cp311-cp311-win_amd64.whl (333.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

unicorn_fy-0.14.2-cp311-cp311-win32.whl (320.3 kB view details)

Uploaded CPython 3.11 Windows x86

unicorn_fy-0.14.2-cp311-cp311-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

unicorn_fy-0.14.2-cp311-cp311-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

unicorn_fy-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

unicorn_fy-0.14.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

unicorn_fy-0.14.2-cp311-cp311-macosx_10_9_x86_64.whl (355.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

unicorn_fy-0.14.2-cp310-cp310-win_amd64.whl (333.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

unicorn_fy-0.14.2-cp310-cp310-win32.whl (320.8 kB view details)

Uploaded CPython 3.10 Windows x86

unicorn_fy-0.14.2-cp310-cp310-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

unicorn_fy-0.14.2-cp310-cp310-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

unicorn_fy-0.14.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

unicorn_fy-0.14.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

unicorn_fy-0.14.2-cp310-cp310-macosx_10_9_x86_64.whl (356.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

unicorn_fy-0.14.2-cp39-cp39-win_amd64.whl (333.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

unicorn_fy-0.14.2-cp39-cp39-win32.whl (320.8 kB view details)

Uploaded CPython 3.9 Windows x86

unicorn_fy-0.14.2-cp39-cp39-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

unicorn_fy-0.14.2-cp39-cp39-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

unicorn_fy-0.14.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

unicorn_fy-0.14.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (999.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

unicorn_fy-0.14.2-cp39-cp39-macosx_10_9_x86_64.whl (356.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

unicorn_fy-0.14.2-cp38-cp38-win_amd64.whl (340.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

unicorn_fy-0.14.2-cp38-cp38-win32.whl (322.8 kB view details)

Uploaded CPython 3.8 Windows x86

unicorn_fy-0.14.2-cp38-cp38-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

unicorn_fy-0.14.2-cp38-cp38-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

unicorn_fy-0.14.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

unicorn_fy-0.14.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

unicorn_fy-0.14.2-cp38-cp38-macosx_10_9_x86_64.whl (355.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

unicorn_fy-0.14.2-cp37-cp37m-win_amd64.whl (326.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

unicorn_fy-0.14.2-cp37-cp37m-win32.whl (310.9 kB view details)

Uploaded CPython 3.7m Windows x86

unicorn_fy-0.14.2-cp37-cp37m-musllinux_1_1_x86_64.whl (919.2 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

unicorn_fy-0.14.2-cp37-cp37m-musllinux_1_1_i686.whl (837.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

unicorn_fy-0.14.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (904.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

unicorn_fy-0.14.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (857.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

unicorn_fy-0.14.2-cp37-cp37m-macosx_10_9_x86_64.whl (348.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file unicorn_fy-0.14.2.tar.gz.

File metadata

  • Download URL: unicorn_fy-0.14.2.tar.gz
  • Upload date:
  • Size: 198.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unicorn_fy-0.14.2.tar.gz
Algorithm Hash digest
SHA256 73f31a007c1864e538be3c85cedce4db7bf4728346685f9d43d570b683532b29
MD5 2df6993f6b761bb363949b47ec4f4b02
BLAKE2b-256 812999f69af171c8f24fb21ed28f5f69dd56891c117b94d79d2d50fc6669cb43

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1d635e3ba7e1195d40479bd4078b70c6bdae6879933152226f7c8673f42cb10f
MD5 d45cace0fb32de1798a3dc85238ec59c
BLAKE2b-256 99057de074118d04185cc3f8a080a55d2bfbd6aa2200a19a9c7c62ced74afdf9

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c360271c9dd72655ebfaad77d09a704037fce435cde5ca0f5de08f447894f230
MD5 73dab513d33eece9fa108b8a665fe78e
BLAKE2b-256 c22dc63a4a2468a44362eaf2e7d1ed06c0595b043e0be1e8d9fe9e3fa3577864

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 545060ffa489c55d37613ffbfe857700aaa9f715dbd096429bc594cd2fedf25d
MD5 5803b94123427ca9395ca47878607ab3
BLAKE2b-256 7302fb6447e5bc5338586cfc113044acd611b0bf2bd5892479359ca0c05fd1cd

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b79cbb3afa06a53ef6e84af9453202b227322487d2aa7ee8226c75eda1711c7
MD5 bb24c00a393594ad4c3183f02bbac839
BLAKE2b-256 97b35d29d82f069b0944934b133a67c0a990e5a6ad2cc639db1b3309c746c253

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 de88542bad90f8f6f4685f387361464b636cfc2cdeb6274efb3fb95323c33a20
MD5 4d25be14498fdf09316e6d659f78b9f5
BLAKE2b-256 1d73d8ecee79f340d11546075b1e85364d828e9cfdc1ab91caf358e1a2ad9576

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e3af9f0b484b08ee6d165757d77476ba3c8af521a3cad5e23b6e2da73331c4b
MD5 86e7278f955eb180005b0d5b4fac2d35
BLAKE2b-256 6d9ffd9a72a32ee948b035a44d06102c0684dfe1fee84ab4cb132223cd85f7ea

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b1de4abe9b7f916741333c0a620163d7a6f511da81fe9524acfd8077ac7d566a
MD5 510fdf0290951eab53f7ba74dce0443c
BLAKE2b-256 ec50f354b873661782c7025a8155e05e6946e29b8c8a976d225ec743ed5749fb

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c06ccd67471e0aaf88dd054c60583f9b2052cc627a8369fb16f353e41738eda7
MD5 4039ed34298e7cac71ae66595a79001d
BLAKE2b-256 05c049af7e270e351b91759a17eb1c35dcc9d206030cdcac3f9f91402d312760

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2681253073a88751867914299c96c93cf1f533f4b499deb92d8a1b6c15a4e274
MD5 5f5196caceb022dba7b3d22af11bab49
BLAKE2b-256 441470620ce91fd284e14fcccfb4fdee7dbe3b82856db129d4974f460fe07a3c

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: unicorn_fy-0.14.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 317.5 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unicorn_fy-0.14.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 7d6d75b3779f808b5d33f88f36cc3eeb14b0fcd4fb9b6329daaf00f6b4678b59
MD5 3a1ecab43dc888ec8813759b42475775
BLAKE2b-256 915f1f32efc53ec9318362f9a27a82d165d38c244bbf201177f2053ea6a36a4d

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d134f103fc74acb60d39ae6dfc7dff73a28b6d72dd80dedf5290d3e37d3cc5c4
MD5 a13a53245723d2d62abbef62e8df7a0b
BLAKE2b-256 79fc07012da7468f2cee0d1a381ad5225f7221dc5b372294f8ea4b3541eb1df5

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 18e639c8b53922d0fdb2ca8fa8271e83cf4fdeff0e7f84f73ecca2256120b093
MD5 c18c473fa8f69df8cc9b1863f9a9266a
BLAKE2b-256 a9458235c59496e4481c4287ee307417041993902621c51b119fbd727e8e4d3b

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9adc735f6b4be69e9641e8d063bf35c28da1805250d33960df25d2318d2c2e02
MD5 512bc529e9af30456a3e6cc37d6f5917
BLAKE2b-256 41718b13572fefe4a4ec1487fcf92db38876fd19bf62454797ae0c3c1dd8a9c2

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c2790998f804f3c32e50620519f79dc22cc983a6ca097e7dbdc4b56eb37f404f
MD5 7e6b3d6bf35510f57fd9f7c14405e490
BLAKE2b-256 058e67b78d1b69d1886de0db2ccdeca71c72c3bd05dc1e382bd0fd421c25d8b9

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 868ff7212320574489d8d8a0997a897585b8ba7d08ad677f8f0b3b993b06d7db
MD5 e4076a010066029d6a8413495c416153
BLAKE2b-256 342fe4dc7cd4e126edc6322c6387c6c9e77943448ed4f59c300d4652cdfa4a77

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2b2d98e5173b240fd565927dc7dfc113cc43eb1959955ff5cc6937060221df65
MD5 3bbf60cd748c631e2530e2ce534e2e42
BLAKE2b-256 818729477178ab1411c948faa10439985d33867a63b5414d181f832d966e35fd

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: unicorn_fy-0.14.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 320.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unicorn_fy-0.14.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 7a0680b07268501e9fbca20e629e0e7109ba9b3c1acd77d5592d73d9dc5fb16f
MD5 f7f9132a6b73167826f88d80447ae374
BLAKE2b-256 7dbb63df24256b177d0308cd64ea4850b33c63b87319b8a66c78b89e3adda5de

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 224f855f490082c2ec710d8f4c6652a6f07cee8afa62c3d5317835310c086bc4
MD5 39eb15cb47a8c1ac0e0600e52c0caad2
BLAKE2b-256 edf711e5f6d936917e4270151ef9d090eb8f96e456bebbeac6c3930b1d89655c

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e1a5792ac3bda7e5c9893e1c1e38b29ddfe8a90a64bbca2797d6b54655dfbb64
MD5 6643a1107d7c27b71826e51448fcb90d
BLAKE2b-256 f728538736475cdb680329006ee94d58d5e23f558e111bea1f093101fcedc758

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43302bd04f981510e2dff9ef9f06414f1eb57973fdac161a3c8f44c5ad69061f
MD5 29c4478d573f8b1aae8cac5d2ffedeb4
BLAKE2b-256 8c2cd75638d0c0898d08c7a5f5a9d4e46a9cd95d30034cbd4a5f7252f1bdedc0

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4faa0a8551fd0c443d9c35061d50d0ce83f970be2b95621651fe7fa770400839
MD5 b3aab92e4200ba24a81bed8ca12f3907
BLAKE2b-256 2f075a52c23b59ec8803216bcac2051228de132835ee85b91458065e0ac973e2

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 97c0930be357836261d3f8c3d4e59e23c6813293845a69dffa0de1560a053336
MD5 3a12e2ef312570abeefc976e41aa6985
BLAKE2b-256 d6b199c0158b18460f08362bb29f3c5a07536ed783e7b7ec2add528ec13c1ed4

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bef2de2bd4e7dcb095f9015745d211cbd8708daf104ab54a7f89210c1c610cd0
MD5 3941ddbc6290f7c8e8d58e1d754eab1b
BLAKE2b-256 4142d2d4d752b70136aac6dde42fb7c98868559b915b487e869e6d9601b608a8

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: unicorn_fy-0.14.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 320.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unicorn_fy-0.14.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a9dbe574bbb835b2bdd9cc494a9ba900664a5c1378e7d32b8a88eb35ad863614
MD5 6dc91f729af37320dae79a0d327d44fe
BLAKE2b-256 4655217d8be43663427fdd00da742470a969be40487233de97df8f21d77ae60e

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9d16c207df9d1cb01f10b17dc4e21977e4dea991b8988d1f754e5e4aa1927dcb
MD5 bde1d9438ccbbcb706deb38111e73822
BLAKE2b-256 ac0ab0a2e6b255ce7af78215f350f0c6f95e35f54208a10d49a3781567a67930

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 57b5dd38ab5cbc2363cf6d564bfd2e35d6c3ad5b595a6ec7007232b8a59113cb
MD5 a412673a51cb424ee18144d49e6cbeba
BLAKE2b-256 1e2bfae2abf3669098c936d7960bf720df9f8bf6e0a3b18dec2071bf11aed1ae

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 119fb1a86da62ee06f9fc6ab086bf664271dcf4f013d92e685a81710a4864d08
MD5 630d3fc49cf886af9689c06e98b6948f
BLAKE2b-256 0c51000c0ff94f868d0c7c9296dadc4cc630a4820b267cd273ecf09f0797c700

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f807dd490dae13a00baf14ac703def889027c35d5e5845b0a9511096c5defba4
MD5 13963c3625efd8ef1055d09b4d440150
BLAKE2b-256 21ae58daf9d044aa2a2b9e9b7797e9c19d10153bd33f9f763b851c145fe02018

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a36e47ebc250c025033e8500f00269c4711bd784196a9b2fc7b0c0bd3fc8e1c
MD5 8c48b83d094fb1d81d0c9f59e67bf73c
BLAKE2b-256 346258901a48e230f979c65c21e74d6de75e703648546bfc1577190c5d4dea33

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 28370333ce4a489076541752a34042acc54cf7b7bcddc12b7880d9c69ac66f8d
MD5 138b581a5bb54806ed61f4472bbd46a0
BLAKE2b-256 3fb6c3a7d9c4984e0de6c1036ff77db2febec2da3765dc00826c8a569e6dc878

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: unicorn_fy-0.14.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 320.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unicorn_fy-0.14.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 69e5a2a1e6041f25acab65b3a1a1192ba61a46860b75b2c72e270199c0c32c0e
MD5 9082e9c81c6eed0fedd1ea99f3a45f48
BLAKE2b-256 498bbd393617d61a2143b627a803bcc341732edf6dc659b07366bde0bcc740a7

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0e7faa9390f76abf992389d401e19cd3188b5525a09169fea2df2f16e701bc0d
MD5 5560ff825be675b296b00e933b669c18
BLAKE2b-256 179abc6789d95993d8a42049263111d002536a39afe5cc2fe5db77e4c61e7808

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b0098520313572a5a77d6bdc516ae709f8c1f97a38dde6ab9e7d5feabe0f28a5
MD5 a00a7d1a243499f6fba20a659e8be9bb
BLAKE2b-256 fd095592627d0f98da1badcbbe2a0c42bd23e5218acb43c9591c30680bbe009d

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 599ffe4ed40e277dcabc9c15949deb19e30bdf47919a78e1210f87707de9bc10
MD5 b8357b76499438fe489ffe8300afcef6
BLAKE2b-256 771fca9374694007a5d11c54e8d1bc32a9ad038214fb94791835d865ba7a01cc

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 287aeae74a9cf3f1c4f852c8ef5cd06f8f2672b0bca4a775153f63d347ad670c
MD5 75601bab583d7a13a2a53df9287a1511
BLAKE2b-256 6c6aea1dbeaa67a84bdb80b1901e6042e94e0113fe3ca9528b66aac9800b30f1

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8e5a259abc1a0c04d6cd67fd5fc0c36744c8e45d3ffdd6884af93f4158a50e2
MD5 2a8c0c03b858e03b00071b9f3399ebcb
BLAKE2b-256 088ce2e8a708cb8eb78ba436ce314d47dca0803d08aa209c544a8a8b23c333f2

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 36e2bbe1d13f364e6f71a97f6d8c1d5465553b3ae2e2aa878da6e5390898da51
MD5 5ba8d3b2e2baef3045c2ad8f488add08
BLAKE2b-256 ddaa722b7da9e7a85773a1dbc68513612d70460568e81a98d0c1effc1f42c4a3

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: unicorn_fy-0.14.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 322.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unicorn_fy-0.14.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 52ab8ec30ba40fd137658857bfd6dc39d9639e45b7892bece2b3fff2e2c3e672
MD5 e4823c5aeb365925c0c45526d02c15a1
BLAKE2b-256 5be73b0ade64b5213e47757da503db9c096a4b42cba07990891c1af93ef1b12e

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 de4c6738ce75962afb881115268b870bd929e41046658cbc3f26d5955222b98d
MD5 043efe00d890faf00a14f9d13fb573b1
BLAKE2b-256 74c578e602dc535bc31d1f7a1f2df2b707e57c2ae6532984ea1b45557888e26f

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e4b0f9ef09d23054092e0ab44d74cc85dfdef5753ac69173f34d09d8ff39225b
MD5 4d28f6484f106f41344e76b75a3b4995
BLAKE2b-256 d16785bbe2f01f47508d858e4172a199fdb4ff32d997c96b2697e06466cfdcce

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c35cba35f28a35f643fd24b12b64426c811d53987be46846110e720537741c70
MD5 9774d8e2886ecbf3b15c0bb8cbf7287b
BLAKE2b-256 e2e03725e44311ffcde16d9a6e2de982d852b54d824717c752e81e2b86520020

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4861694d7ae35ac83de57f7e38f8de28ba5d6eb5add3a6e3b57e3626c903e281
MD5 61f1a981cc9bba8831d0bf505684397c
BLAKE2b-256 87b7e6e5137ad0902d915f760eaf37573fb8b9210ad5e3a76bf26d9f4bae33f3

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2f161a86fbd1a4a7b655afeb394d13e352a0aebf28715db977c94c74a5ce79ce
MD5 597b204bbbb16fa30ac6eae0e0372f9d
BLAKE2b-256 62cb7047b54a9fe6b0400bf2ea5ac2d3a518d636d7f8a85c5a220591334bbe55

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 33e788d30579d09e3ad97016bd132fcb0e3d1cbcc69cc549eaf0783f7ff9573e
MD5 4dcb25637efb727c5b044975f0a0579e
BLAKE2b-256 682c7f786c006bf389062788bcb896d09f2584d6c83614237d20348a175b4adf

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: unicorn_fy-0.14.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 310.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unicorn_fy-0.14.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 18706dc167d4dadeb007f6cc9cf83ac44837c84209b8b31f21c07cf684dceb13
MD5 68777e0671088cc71464399b44a99112
BLAKE2b-256 f72f07ce7856413790f9bf95fda7e3d7ca798f283bdd8d95386419c95f478509

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5c4a58630cfceed8646f2562abcf09ccc1b4b8367465e277c8a49ee93b7a4b5f
MD5 4a665ca2490baeab9736754017ab16f3
BLAKE2b-256 687e6e622419c0f181a2c5c7e8a756f0b6c5925ca7bf8f7edb8cfc2b4b5da18f

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9eb2a6aab8a43eeba5c4650a54877502dd7bd2170c66c32fa8b360594b9cffae
MD5 be8c14ebdd541a80741e920389169d42
BLAKE2b-256 bba19bc47e0893ed2cd2bd472075faa5296f029c12587002c592017953af2e11

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95af01c3a57939424f0561c80267283a4555576ad1560059ab8ac5f333609092
MD5 f602e03f39d3d93ff341230f0bf0d6a0
BLAKE2b-256 75e35957c3e1ead89f563c06544ba704d5bccd834a4b8f8bf4e0d079c9005126

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b375ae4e24b067473ad25b75581b3a4e7b8241fa8a139b996df9c922444faa1a
MD5 d8d580b60b4ec8516c0688588813e06c
BLAKE2b-256 b1c586befe0bc65ae77c549303ba9fafda459148953c5aac670f1c1670dfe5c4

See more details on using hashes here.

File details

Details for the file unicorn_fy-0.14.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unicorn_fy-0.14.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1a230edadd3b07258867e759d7bbe795445b7052328e72d4da03c1bdfa9f7bc8
MD5 a92d081c94a107fa45ceb54ec26bb266
BLAKE2b-256 9171201ea6ed435b9d68de52ea2c855f6f27c050664d27ce52a9f14099f41df4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page