Skip to main content

Python port of the UniDip clustering algorithm

Project description

UniDip Python Port

See reference paper: http://www.kdd.org/kdd2016/subtopic/view/skinny-dip-clustering-in-a-sea-of-noise

UniDip is a noise robust clustering algorithm for 1 dimensional numeric data. It recursively extracts peaks of density in the data utilizing the Hartigan Dip-test of Unimodality.

Install

coming soon...

pip3.6 install unidip

Examples

Basic Usage

from unidip import UniDip

# create bi-modal distribution
dat = np.concatenate([np.random.randn(200)-3, np.random.randn(200)+3])

# sort data so returned indices are meaningful
dat = np.msort(dat)

# get start and stop indices of peaks 
intervals = UniDip(dat).run()

Advanced Options

  • alpha: control sensitivity as p-value. Default is 0.05. increase to isolate more peaks with less confidence. Or, decrease to isolate only peaks that are least likely to be noise.
  • mrg_dst: Defines how close intervals must be before they are merged.
  • ntrials: how many trials are run in Hartigan Dip Test more trials adds confidance but takes longer.
intervals = UniDip(dat, alpha=0.001, ntrials=1000, mrg_dst=5).run()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unidip-0.1.1.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

unidip-0.1.1-py3-none-any.whl (6.8 kB view details)

Uploaded Python 3

File details

Details for the file unidip-0.1.1.tar.gz.

File metadata

  • Download URL: unidip-0.1.1.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for unidip-0.1.1.tar.gz
Algorithm Hash digest
SHA256 ec62dd0f753923e89bcb870e63ce7d3c4c92eb2ebbd91c84f658ef4358fd1d01
MD5 60ad20fe47f0c29ab7c8dea1c843f617
BLAKE2b-256 1c22e2b39fd524297ecc6c439748c4e20d56a97a8829f2b2b1897365a0f23a19

See more details on using hashes here.

File details

Details for the file unidip-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for unidip-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4cd76b9ff9924efade07108798d50ed5dcca2a92bf9ab4c8bf1170fb4caf780d
MD5 01d3bac76ad32d74aa046d74075eea8d
BLAKE2b-256 793751df0a51cfb715bbee7f0a3a51f0414bfd5e47ff0052cf4d86f7cf4c9d5a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page