Python port of the UniDip clustering algorithm
Project description
UniDip Python Port
See reference paper: http://www.kdd.org/kdd2016/subtopic/view/skinny-dip-clustering-in-a-sea-of-noise
UniDip is a noise robust clustering algorithm for 1 dimensional numeric data. It recursively extracts peaks of density in the data utilizing the Hartigan Dip-test of Unimodality.
Install
coming soon...
pip3.6 install unidip
Examples
Basic Usage
from unidip import UniDip
# create bi-modal distribution
dat = np.concatenate([np.random.randn(200)-3, np.random.randn(200)+3])
# sort data so returned indices are meaningful
dat = np.msort(dat)
# get start and stop indices of peaks
intervals = UniDip(dat).run()
Advanced Options
- alpha: control sensitivity as p-value. Default is 0.05. increase to isolate more peaks with less confidence. Or, decrease to isolate only peaks that are least likely to be noise.
- mrg_dst: Defines how close intervals must be before they are merged.
- ntrials: how many trials are run in Hartigan Dip Test more trials adds confidance but takes longer.
intervals = UniDip(dat, alpha=0.001, ntrials=1000, mrg_dst=5).run()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
unidip-0.1.1.tar.gz
(6.1 kB
view details)
Built Distribution
File details
Details for the file unidip-0.1.1.tar.gz
.
File metadata
- Download URL: unidip-0.1.1.tar.gz
- Upload date:
- Size: 6.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec62dd0f753923e89bcb870e63ce7d3c4c92eb2ebbd91c84f658ef4358fd1d01 |
|
MD5 | 60ad20fe47f0c29ab7c8dea1c843f617 |
|
BLAKE2b-256 | 1c22e2b39fd524297ecc6c439748c4e20d56a97a8829f2b2b1897365a0f23a19 |
File details
Details for the file unidip-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: unidip-0.1.1-py3-none-any.whl
- Upload date:
- Size: 6.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4cd76b9ff9924efade07108798d50ed5dcca2a92bf9ab4c8bf1170fb4caf780d |
|
MD5 | 01d3bac76ad32d74aa046d74075eea8d |
|
BLAKE2b-256 | 793751df0a51cfb715bbee7f0a3a51f0414bfd5e47ff0052cf4d86f7cf4c9d5a |