Skip to main content

Unified Distributed Execution

Project description

Unified Distributed Execution

PyPI version

What is unidist?

unidist is a framework that is intended to provide the unified API for distributed execution by supporting various performant execution backends. At the moment the following backends are supported under the hood:

unidist is designed to work in a task-based parallel model.

Also, the framework provides a Python Sequential backend (pyseq), that can be used for debugging.

Installation

Using pip

unidist can be installed with pip on Linux, Windows and MacOS:

pip install unidist # Install unidist with dependencies for Python Multiprocessing and Python Sequential backends

unidist can also be used with MPI, Dask or Ray execution backend. If you don't have MPI, Dask or Ray installed, you will need to install unidist with one of the targets:

pip install unidist[all] # Install unidist with dependencies for all the backends
pip install unidist[mpi] # Install unidist with dependencies for MPI backend
pip install unidist[dask] # Install unidist with dependencies for Dask backend
pip install unidist[ray] # Install unidist with dependencies for Ray backend

unidist automatically detects which execution backends are installed and uses that for scheduling computation.

Note: There are different MPI implementations, each of which can be used as a backend in unidist. Mapping unidist[mpi] installs mpi4py package, which is just a Python wrapper for MPI. To enable unidist on MPI execution you need to have a working MPI implementation and certain software installed beforehand. Refer to Installation page of the mpi4py documentation for details. Also, you can find some instructions on MPI backend page.

Using conda

For installing unidist with dependencies for MPI and Dask execution backends into a conda environment the following command should be used:

conda install unidist-mpi unidist-dask -c conda-forge

All set of backends could be available in a conda environment by specifying:

conda install unidist-all -c conda-forge

or explicitly:

conda install unidist-mpi unidist-dask unidist-ray -c conda-forge

Note: There are different MPI implementations, each of which can be used as a backend in unidist. By default, mapping unidist-mpi installs a default MPI implementation, which comes with mpi4py package and is ready to use. The conda dependency solver decides on which MPI implementation is to be installed. If you want to use a specific version of MPI, you can install the core dependencies for MPI backend and the specific version of MPI as conda install unidist-mpi <mpi> as shown in the Installation page of mpi4py documentation. That said, it is highly encouraged to use your own MPI binaries as stated in the Using External MPI Libraries section of the conda-forge documentation in order to get ultimate performance.

For more information refer to Installation section.

Choosing an execution backend

If you want to choose a specific execution backend to run on, you can set the environment variable UNIDIST_BACKEND and unidist will do computation with that backend:

export UNIDIST_BACKEND=mpi  # unidist will use MPI
export UNIDIST_BACKEND=dask  # unidist will use Dask
export UNIDIST_BACKEND=ray  # unidist will use Ray

This can also be done within a notebook/interpreter before you initialize unidist:

from unidist.config import Backend

Backend.put("mpi")  # unidist will use MPI
Backend.put("dask")  # unidist will use Dask
Backend.put("ray")  # unidist will use Ray

If you have installed all the execution backends and haven't specified any of the execution backends, MPI is used by default. Currently, almost all MPI implementations require mpiexec command to be used when running an MPI program. If you use a backend other than MPI, you run a program as a regular python script (see below).

Usage

# script.py

import unidist
unidist.init() # MPI backend is used by default

@unidist.remote
def foo(x):
    return x * x

# This will run `foo` on a pool of workers in parallel;
# `refs` will contain object references to actual data
refs = [foo.remote(i) for i in range(5)]
# To get the data call `unidist.get(...)`
print(unidist.get(refs))

Run the script.py with:

$ mpiexec -n 1 python script.py  # for MPI backend
# $ python script.py  # for any other supported backend
[0, 1, 4, 9, 16]  # output

For more examples refer to Getting Started section in our documentation.

Powered by unidist

unidist is meant to be used not only directly by users to get better performance in their workloads, but also be a core component of other libraries to power those with the performant execution backends. Refer to Libraries powered by unidist section of Using Unidist page to get more information on which libraries have already been using unidist.

Full Documentation

Visit the complete documentation on readthedocs: https://unidist.readthedocs.io.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unidist-0.7.0.tar.gz (236.9 kB view details)

Uploaded Source

Built Distributions

unidist-0.7.0-cp312-cp312-win_amd64.whl (195.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

unidist-0.7.0-cp312-cp312-win32.whl (184.9 kB view details)

Uploaded CPython 3.12 Windows x86

unidist-0.7.0-cp312-cp312-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

unidist-0.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (613.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

unidist-0.7.0-cp312-cp312-macosx_11_0_arm64.whl (201.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

unidist-0.7.0-cp312-cp312-macosx_10_9_x86_64.whl (207.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

unidist-0.7.0-cp311-cp311-win_amd64.whl (194.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

unidist-0.7.0-cp311-cp311-win32.whl (184.0 kB view details)

Uploaded CPython 3.11 Windows x86

unidist-0.7.0-cp311-cp311-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

unidist-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (622.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

unidist-0.7.0-cp311-cp311-macosx_11_0_arm64.whl (200.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

unidist-0.7.0-cp311-cp311-macosx_10_9_x86_64.whl (206.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

unidist-0.7.0-cp310-cp310-win_amd64.whl (194.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

unidist-0.7.0-cp310-cp310-win32.whl (184.3 kB view details)

Uploaded CPython 3.10 Windows x86

unidist-0.7.0-cp310-cp310-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

unidist-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (587.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

unidist-0.7.0-cp310-cp310-macosx_11_0_arm64.whl (200.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

unidist-0.7.0-cp310-cp310-macosx_10_9_x86_64.whl (206.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

unidist-0.7.0-cp39-cp39-win_amd64.whl (195.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

unidist-0.7.0-cp39-cp39-win32.whl (185.0 kB view details)

Uploaded CPython 3.9 Windows x86

unidist-0.7.0-cp39-cp39-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

unidist-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (590.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

unidist-0.7.0-cp39-cp39-macosx_11_0_arm64.whl (201.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

unidist-0.7.0-cp39-cp39-macosx_10_9_x86_64.whl (206.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file unidist-0.7.0.tar.gz.

File metadata

  • Download URL: unidist-0.7.0.tar.gz
  • Upload date:
  • Size: 236.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unidist-0.7.0.tar.gz
Algorithm Hash digest
SHA256 b8498d3b4efb7e8e999ad6cf5aefe2aa33890f626c375cc8093651089d8d264c
MD5 789e81690063f9d2f0f5d3c20c1a34da
BLAKE2b-256 c5055ea27c7f1ab68271278e6883ef4eb6001c061959895310d56543bc205216

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: unidist-0.7.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 195.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unidist-0.7.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d6801da3341decab55462af44daaba0219e89de2a6cbfe4e15ea020a0aae5a99
MD5 f874a9ea673df056a4ecae56f11687a1
BLAKE2b-256 552e331c3e3a1bc7ac063f353f45c89c832dddfcab7d7d5dd209330803dc14cb

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: unidist-0.7.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 184.9 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unidist-0.7.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 208047dcc706e8a96a9f9dbf756f568d421929be86ca7edc65f44c02318c45a7
MD5 8b2e43c5a77a7b16d26cc6b492bce3cb
BLAKE2b-256 d3a5c7808492c8ec4839a690b831c3118d90b6da7c25bace39f008a31f1cde30

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c09ccdfb58817224c3ba8863f18c9ebf1a306a8164a57248b37dac2b72ea76fb
MD5 ddeb236b80662a2bc49a770571baef80
BLAKE2b-256 cd6c79daaab711ea725b2fbbb3a5fb20df9836bd2bef17c84ac5626970cff434

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08c186ac387680e9aa48f1153f01be55c245278b1c09faf4736f57d6f25a3211
MD5 37ad36b976ec7b2e979a7b12acf31c82
BLAKE2b-256 b193b2890bbe66a65da9b4c7ddb36d37c6093a4856ff4ca8ab74a721cb41f88e

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c889c00c5bde2717d5a9ae24ad9418e94fefe6d047fe27f12b088c6b3c9d2c52
MD5 4b7ab48e194aa4fad92c8df0f5db70a0
BLAKE2b-256 744537e9a7c2bc6e2324a3bf2aa2373fbca72efbe7b791faba61a6d02c5a505e

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 65ffd1e10e322b2dd1f1c2f03a03928fa70d781127be3104314fba7d081a168c
MD5 0bf205280bd5b6ada5d894d532076153
BLAKE2b-256 fab0cdb8557905e2d1a62c59e72b451232315717fbe7c234059df3a572a28e06

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: unidist-0.7.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 194.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unidist-0.7.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 72742383cc3242577be350c53141cc0ea2ea9ed35d6c1e55c1a66add04e597f2
MD5 6645ca93eb222ac849bfe0211661ef11
BLAKE2b-256 4b247a8914a05bf65cbe015632b81c7c3db0183704a49b5dd30c54fe68cf3bc9

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: unidist-0.7.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 184.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unidist-0.7.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b3c8ddeffec668fdf1d6678313fc4eda4e554973d45fd1a25beec4efb8ce2d88
MD5 ec0c02a04f9b16a0e5d0a2cf74037a0f
BLAKE2b-256 e78091316a50d31d60c19fc1d30e78e50e0dbd73c04814e2a16a8615ec6e1889

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 29099ee05cf6ad0cccd916056aaa370655fb48f01e2f53f4b1eaf185dbbf27e2
MD5 a73ea59f70fb3f2cf3f84eac4daa6282
BLAKE2b-256 95661c15d94d7df230530e3824e95646c1c278e68233467349a80cbbe0a7c81f

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d0b39b8272bd22f9507496a5bed338325f0b02f638dc695b4b3599572629677
MD5 2aaa118b9b05d70b49d07e840c9023b0
BLAKE2b-256 282f359478a866a3a62ca299658c10e8e1dce3e4132457c83347f9c81efefd03

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c1295f6be54a9f0b8440e32354b0ea5b41e32b750fc43817c6a9d9d884ddc2f7
MD5 815ec71d5fa90ebe7fe12b67ce1362bb
BLAKE2b-256 051f56442e04c6189be79f8e057544cd44b81607cf880db939c616e08e8fa779

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 51931bb69f606cf246c5cea6b01f055a648baae1c12ed7ef87774e83b0614fca
MD5 cdebe69080c65ea97c4a77ca1cde6527
BLAKE2b-256 95a0f19ca70cb9ab4c994d9221407df461cdfafff306d7d1de614609480f547d

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: unidist-0.7.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 194.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unidist-0.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e20d7a56aa9dce4120a95100cfd5dbad616196c30a129d30d9e2e97c8e76e321
MD5 9c9bb382f321accad74b18e885d7e2ae
BLAKE2b-256 805b96b806d1d7e0836909aa5c8facfbe863ae3d49b1e1b97ca96ceaf2deaa04

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: unidist-0.7.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 184.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unidist-0.7.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f416f9cb09837c90a2447e8377f9b8ae545045116544c7be4a4de3a5e5efba7f
MD5 457f1fbdd34110ef90ff1a41d323baa1
BLAKE2b-256 9079b729876041281f33ce2c6b7acbf8f1f5339833ff5a1a709040677995e047

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9b40622c707cb7c9270652d05ea1448e522e1a17e51c3e7b66cdbfdb10772023
MD5 7ecfdca75ffc60a6112ecfa7fa8f95cc
BLAKE2b-256 9c93912ef4e0bb34b8fb0c94e53e0aa69221fdbed2ce588e602dcd0dd49d540b

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 473a095144a66ce33ccefcec9740c6592db11c9feb19fa65329ebce9de33cd3c
MD5 32c7b678cc5cf4f114a1ab6cd5ee5a19
BLAKE2b-256 9c0c6823bbc4882546814f5a41c8873a97572d1f7cffabc25cb19d8f03fff8df

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e2c8a03d6e38d0d1abc244c9f3ffd17904d50b3e2105391a968d7e36038fee1a
MD5 ccbeec98a1d2b37574572ce6031ecb25
BLAKE2b-256 ab0145fa079a9ca8d41c9f9c9bcded38013c38bdafe6fe41172f5ae8bc0948fb

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e718da7327aae9ad0087f0aff7dab4c1d965e54448f53048715e632b69b99e2e
MD5 2cf0528f56d0af037d678e647db70712
BLAKE2b-256 aca127309cb95747908f09fe4f3b0202e638996c16bf6089031288e07a533a88

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: unidist-0.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 195.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unidist-0.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 799595408e1cd0ea9890d557d6a8354e29406f58030b96c35b8cbbb665a10e85
MD5 f2cb836815513e010a9d76cb05732ecc
BLAKE2b-256 35d5ccd1517786c7f64418a271a58b4dc6aee59d7562d0aaae50384c9fcd3975

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: unidist-0.7.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 185.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for unidist-0.7.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 1561f11aeade6dfba36f495d1d1925f192cb560750528a279c77aec16049c20e
MD5 4a966ce12cb3b6cacec2f26247cd7583
BLAKE2b-256 bd07ece22a49f0e9601a86f9baa2beacd9518a9b8eaaf115de91ab7b7a8a0781

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5b4ec88468479229bb6676639b543a6acc59b0be456ceae95bcee7fdb84671fb
MD5 0785966aa10b5e648bd1e57c2a0a52bd
BLAKE2b-256 106e800763b50e275a806d8329f15b408d3b8d090943a4a534e9fd81db4c92a6

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac6c7201776c27baf1c49e9fcd23b66c2f2d137772302c52b2eb04eae580ffa6
MD5 1169c765785ac7452b59cfbf69d20809
BLAKE2b-256 f3c6471dea15f57ddca10b3b71f939233629679fca3260eb67a0f3af0cf51476

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e56c6adbd234fc8509c81bc76833174fba41eeba0fc7d27e39a6a498c9ff28e5
MD5 cc539a85a58c9e12a7703054f641ae0b
BLAKE2b-256 efd5cef23d4bfa640ca29c3ff8322cee132df66caa0dc8d83302b95026d77b7b

See more details on using hashes here.

File details

Details for the file unidist-0.7.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 528dbf616ebe9cb4dfc5fafc697f523e6629e92b7552a5c0599af3556ca31ea0
MD5 59c8cae08bf043d96ce697ba4f5624a2
BLAKE2b-256 5448d8388215f107775588bc62b0c17d370d7c2ecf9b7811777252812c000916

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page