Skip to main content

Unified Distributed Execution

Project description

Unified Distributed Execution

PyPI version

What is unidist?

unidist is a framework that is intended to provide the unified API for distributed execution by supporting various performant execution backends. At the moment the following backends are supported under the hood:

unidist is designed to work in a task-based parallel model.

Also, the framework provides a Python Sequential backend (pyseq), that can be used for debugging.

Installation

Using pip

unidist can be installed with pip on Linux, Windows and MacOS:

pip install unidist # Install unidist with dependencies for Python Multiprocessing and Python Sequential backends

unidist can also be used with MPI, Dask or Ray execution backend. If you don't have MPI, Dask or Ray installed, you will need to install unidist with one of the targets:

pip install unidist[all] # Install unidist with dependencies for all the backends
pip install unidist[mpi] # Install unidist with dependencies for MPI backend
pip install unidist[dask] # Install unidist with dependencies for Dask backend
pip install unidist[ray] # Install unidist with dependencies for Ray backend

unidist automatically detects which execution backends are installed and uses that for scheduling computation.

Note: There are different MPI implementations, each of which can be used as a backend in unidist. Mapping unidist[mpi] installs mpi4py package, which is just a Python wrapper for MPI. To enable unidist on MPI execution you need to have a working MPI implementation and certain software installed beforehand. Refer to Installation page of the mpi4py documentation for details. Also, you can find some instructions on MPI backend page.

Using conda

For installing unidist with dependencies for MPI and Dask execution backends into a conda environment the following command should be used:

conda install unidist-mpi unidist-dask -c conda-forge

All set of backends could be available in a conda environment by specifying:

conda install unidist-all -c conda-forge

or explicitly:

conda install unidist-mpi unidist-dask unidist-ray -c conda-forge

Note: There are different MPI implementations, each of which can be used as a backend in unidist. By default, mapping unidist-mpi installs a default MPI implementation, which comes with mpi4py package and is ready to use. The conda dependency solver decides on which MPI implementation is to be installed. If you want to use a specific version of MPI, you can install the core dependencies for MPI backend and the specific version of MPI as conda install unidist-mpi <mpi> as shown in the Installation page of mpi4py documentation. That said, it is highly encouraged to use your own MPI binaries as stated in the Using External MPI Libraries section of the conda-forge documentation in order to get ultimate performance.

For more information refer to Installation section.

Choosing an execution backend

If you want to choose a specific execution backend to run on, you can set the environment variable UNIDIST_BACKEND and unidist will do computation with that backend:

export UNIDIST_BACKEND=mpi  # unidist will use MPI
export UNIDIST_BACKEND=dask  # unidist will use Dask
export UNIDIST_BACKEND=ray  # unidist will use Ray

This can also be done within a notebook/interpreter before you initialize unidist:

from unidist.config import Backend

Backend.put("mpi")  # unidist will use MPI
Backend.put("dask")  # unidist will use Dask
Backend.put("ray")  # unidist will use Ray

If you have installed all the execution backends and haven't specified any of the execution backends, MPI is used by default. Currently, almost all MPI implementations require mpiexec command to be used when running an MPI program. If you use a backend other than MPI, you run a program as a regular python script (see below).

Usage

# script.py

import unidist
unidist.init() # MPI backend is used by default

@unidist.remote
def foo(x):
    return x * x

# This will run `foo` on a pool of workers in parallel;
# `refs` will contain object references to actual data
refs = [foo.remote(i) for i in range(5)]
# To get the data call `unidist.get(...)`
print(unidist.get(refs))

Run the script.py with:

$ mpiexec -n 1 python script.py  # for MPI backend
# $ python script.py  # for any other supported backend
[0, 1, 4, 9, 16]  # output

For more examples refer to Getting Started section in our documentation.

Powered by unidist

unidist is meant to be used not only directly by users to get better performance in their workloads, but also be a core component of other libraries to power those with the performant execution backends. Refer to Libraries powered by unidist section of Using Unidist page to get more information on which libraries have already been using unidist.

Full Documentation

Visit the complete documentation on readthedocs: https://unidist.readthedocs.io.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unidist-0.7.2.tar.gz (237.7 kB view details)

Uploaded Source

Built Distributions

unidist-0.7.2-cp312-cp312-win_amd64.whl (195.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

unidist-0.7.2-cp312-cp312-win32.whl (185.1 kB view details)

Uploaded CPython 3.12 Windows x86

unidist-0.7.2-cp312-cp312-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

unidist-0.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (612.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

unidist-0.7.2-cp312-cp312-macosx_11_0_arm64.whl (201.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

unidist-0.7.2-cp312-cp312-macosx_10_9_x86_64.whl (207.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

unidist-0.7.2-cp311-cp311-win_amd64.whl (194.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

unidist-0.7.2-cp311-cp311-win32.whl (184.3 kB view details)

Uploaded CPython 3.11 Windows x86

unidist-0.7.2-cp311-cp311-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

unidist-0.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (622.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

unidist-0.7.2-cp311-cp311-macosx_11_0_arm64.whl (200.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

unidist-0.7.2-cp311-cp311-macosx_10_9_x86_64.whl (206.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

unidist-0.7.2-cp310-cp310-win_amd64.whl (194.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

unidist-0.7.2-cp310-cp310-win32.whl (184.7 kB view details)

Uploaded CPython 3.10 Windows x86

unidist-0.7.2-cp310-cp310-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

unidist-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (587.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

unidist-0.7.2-cp310-cp310-macosx_11_0_arm64.whl (200.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

unidist-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl (206.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

unidist-0.7.2-cp39-cp39-win_amd64.whl (195.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

unidist-0.7.2-cp39-cp39-win32.whl (185.2 kB view details)

Uploaded CPython 3.9 Windows x86

unidist-0.7.2-cp39-cp39-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

unidist-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (589.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

unidist-0.7.2-cp39-cp39-macosx_11_0_arm64.whl (201.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

unidist-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl (206.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file unidist-0.7.2.tar.gz.

File metadata

  • Download URL: unidist-0.7.2.tar.gz
  • Upload date:
  • Size: 237.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unidist-0.7.2.tar.gz
Algorithm Hash digest
SHA256 6386e1ad5143fe132b9f96e232fe85fc39830ed2886515440e4ba1473255e4a0
MD5 6355b59835da431ad5d7cebb98a62e01
BLAKE2b-256 4ec4e20b2bab0eeaea0c7589c9b2eb09858c1fb38fe69206bab9bcd13dfedf2c

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: unidist-0.7.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 195.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unidist-0.7.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9492cb220ed0ac90e3acc69747b3b37dc8df38fe65ba49f47bfb022ca7c7969b
MD5 1e4c744434fd68caab65c6804d991e42
BLAKE2b-256 ac84cb2bd73773c9c1022edbc511d7af1aa6e37fae6e4ab949a00ef21ca26292

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: unidist-0.7.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 185.1 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unidist-0.7.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 81670a2345973cfd6d5ef4bf8695d3a224c1c9e0b1467ef6488c6af5a104a958
MD5 97f76d66540c33800c0160d773487282
BLAKE2b-256 064886d6295083eba17f9f4d2a00f73855b8629914b5bba2464bc6174819eb3c

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d73ea640cbefa68b42542134e90b6187ae79ad6d45cf3a8cbd2fd03441d8bab9
MD5 a926683f09f0c197e0963a562d455b68
BLAKE2b-256 b709f8d953d8a856132ebe310e2c5d0f23e789b2f2b1e7e050a041c3f9367571

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5af3f9706561d772572d88b450bf2f4eb90befbb58efd90fde38e283c96280fb
MD5 66026afe8ce81a642b621131cbadfc58
BLAKE2b-256 908bc19a703191679f100ad6f90731bd1b30138eb7aa7370fd7766933f1fdab7

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cc11f33606a106c8196a0e48bd751208a42f8b946af8aff98c17be8d4dd7088e
MD5 e15c02eb954a1c50691015354322fdae
BLAKE2b-256 734f2c38f7c6cf52d07d3d7f8be8fc41f8aa71559c8329bfede1b40529155ea6

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb58859379c5f74c8a002ae6073d90dffa320c205bf8a234417214fc9f7e032d
MD5 0a55e351b8e2090a61ee5bf722ab3247
BLAKE2b-256 7e1bb9714f6151f5d810a316a0b48adfec8b10650e6d7b0b48d3e2871ae11a74

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: unidist-0.7.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 194.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unidist-0.7.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e9fb7e04d43f1eae2c4e22cb32ce59d8d75c81fa270731901060afe5cc4d4d61
MD5 459f1d21468e6378e2a7aa05704d8401
BLAKE2b-256 7a4ddac10a74a2b75bbf8e35332f3f891feb22bc19ea81fd46a75a81125a844a

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: unidist-0.7.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 184.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unidist-0.7.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d0650f014b596d2138eb258c58c72bcc9614d44c26a126c74bc3760a35ac8c2f
MD5 cd1a1f918267a11b44a02d8e5f8c1a09
BLAKE2b-256 3c0c6c9dd1b107f1883aa9e4d0dc9059db4fd6713a21c07ed2da7c1a2f64f1df

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 66200f64b25cb2a367de3d25dfaa36637833349a6cf824f07ca4061e1ea84a53
MD5 1d9cf0b42958e0b75337d5c39e098dea
BLAKE2b-256 1d989878d076846d1a964613de5216e6c6c5d9e2c9fbc97f548e306e3c6233e7

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ea6b342a0d2fb1275ba723d663f67e2dacebdf8c0fd59a791f59fee586be6d4
MD5 ad788d9b1bb64bd6252b43d4f73f84cb
BLAKE2b-256 ca9116688b0f3d0778a9679ec9f8bb36745e2b2dfd729aa62f80f5923fe77541

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1513e46d28fd5fc9d84ce4fd51d4607c096599257219f9d545839ae1e6267e37
MD5 9edbfee3f2a48c81e6c68e00dbdb79c7
BLAKE2b-256 ae67a3c81f6a0d4e90b0e9c911716874f9ed4dae4c66b681de8c42a64bbe7421

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f508830cbc49dee4caf978dacb564559b9e28ebb1fa7be9b91d60253475fd180
MD5 993eca99bb93998b00ec912a82734d38
BLAKE2b-256 6ae74d64b064a84ff4e44cfac4496c8045a8dc9ef3816b5aea45030b33c70a07

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: unidist-0.7.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 194.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unidist-0.7.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1b64f1e594c6f3b928d76bf51098a11c7d3710e74035c231aae30963869dff75
MD5 fd3f5540c74bfe303d69d2e7f7bc372e
BLAKE2b-256 8f1a465445a2b2361d670150809deb67e558bc08fe85ff23ed3b7e58f3cd3d8d

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: unidist-0.7.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 184.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unidist-0.7.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 89e311a512ee49e675a6135860b7d76028c44d4fb586e543c3b1d2dcfbcaca6b
MD5 bc89dc60f6801be958b6aa0df22752c8
BLAKE2b-256 25519ca519790c4d9721c2ea1036f206fdbc9938f7b407018a07ae8525e67297

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3b35bb3c0c6912e4b85b87e489d12c5d279bb84847a1306f17c63653656f0c13
MD5 6dbeeb488e45b321c125bda61bcfec46
BLAKE2b-256 dc2c8b203dae7ece6abb5f676b574f1b0ab2507190d1e588f5b84827643f84b7

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 249e0e86d918aa1061723b4a9ee4ffccd1c08b78bea79160d450088f0a27f300
MD5 76c74b3ce9e9b3b8d0990f8841e6f489
BLAKE2b-256 9a186b297e6a76a25e98be62728182a8e38c5c099d754fc430908d884ce7722e

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cd3890782b38986d099f2aeabfe431ddc5c1de75b40243de42638a6fd839d597
MD5 e4685882ab44c0cc2d2a579b8f791c2d
BLAKE2b-256 2b581cffff6879df5a5b948855833a84b34f3ff1bca1409da7da7fb94ec017d6

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c30b88b7aac00a56255bb4a876b1ce9c367728eb41226934dffa658cca841b1a
MD5 aa413c72fe79d7410cdbeaff81b3f18e
BLAKE2b-256 e3617aee6c07e191239e49236dd2e5529572caf62006b02d5d76c7adef4c77c6

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: unidist-0.7.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 195.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unidist-0.7.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7f75d3f22d0016a63f5ce53713ee6bd5e964db354059184e7caf05bae26141cb
MD5 49c415c8de5072ea904c2ca729117af8
BLAKE2b-256 afd8f3dde8e7998dd7e92f80a1d12e4c67bd74080490527081eacb8fb5fc9f7b

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: unidist-0.7.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 185.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unidist-0.7.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3e8b0c1258e5bf240bd7ef39860c2820b211bd6a0ab197b77b93047b81a92c0c
MD5 0debef46b8c628e46abc422a4c329d37
BLAKE2b-256 fcd1cbd378fce69ebbd777603fe37d9a25d5a5b26be9f6eb71d1a7df1ef89356

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 cff837f4becf7e50c4c3144caa82666e481970ba92747b96e9b79318d070de92
MD5 f5d11bdf5562d981bdb38ef53cdea430
BLAKE2b-256 8eaa66d17886eef9ba4349f6613e11d77eda3a4c66a2f57dd766a38d17eda9c8

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e68fa8f4a8134eb64aaf4bcd309e7ee88f0ce521adb91a4653f4ae8ba5ae3dd1
MD5 e13bf9a2b52e9e04e6d1b8d97d4cd73a
BLAKE2b-256 7dccd1b0aaddd5f4847c855fbc57ee4482f8d22dae9fa23362c909c0d4ced962

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 217a61401d595a2b6ebd2665aa4cee2dfcfe32df5666b230902c853255916e54
MD5 206be80c6389901f8b83864502fbfedd
BLAKE2b-256 27689208807529f850d33996cc88fd012b7ed2791f739a37fcf024477c148136

See more details on using hashes here.

File details

Details for the file unidist-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for unidist-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8729857054697f4c4221839b2c6fa2fb094b25e67eb4fd93e4115765674f900d
MD5 146352eb447097816de4ef748934a7d5
BLAKE2b-256 afda69c71d80a047d20cf7f35226b652bcab36c34396b072e4eeb37c82923b29

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page