Skip to main content

Rule-based morphological analysis for Classical Armenian

Project description

Classical Armenian morphological analyzer

This is a rule-based morphological analyzer for Classical Armenian (xcl). It is based on a formalized description of literary Classical Armenian morphology and uses uniparser-morph for parsing. It performs full morphological analysis of Classical Armenian words (lemmatization, POS tagging, grammatical tagging, glossing).

How to use

Python package

The analyzer is available as a Python package. If you want to analyze Classical Armenian texts in Python, install the module:

pip3 install uniparser-classical-armenian

Import the module and create an instance of ClassicalArmenianAnalyzer class. After that, you can either parse tokens or lists of tokens with analyze_words(), or parse a frequency list with analyze_wordlist(). Here is a simple example:

from uniparser_classical_armenian import ClassicalArmenianAnalyzer
a = ClassicalArmenianAnalyzer()

analyses = a.analyze_words('զՔրիստոսի')
# The parser is initialized before first use, so expect
# some delay here (usually several seconds)

# You will get a list of Wordform objects
# The analysis attributes are stored in its properties
# as string values, e.g.:
for ana in analyses:
        print(ana.wf, ana.lemma, ana.gramm, ana.gloss)

# You can also pass lists (even nested lists) and specify
# output format ('xml' or 'json')
# If you pass a list, you will get a list of analyses
# with the same structure
analyses = a.analyze_words([['եւ'], ['Սիրեմ', 'զքեզ', ':']],
	                       format='xml')
analyses = a.analyze_words(['զՔրիստոսի', [['եւ'], ['Սիրեմ', 'զքեզ', ':']]],
	                       format='json')

Refer to the uniparser-morph documentation for the full list of options.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

uniparser-classical-armenian-1.0.0.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file uniparser-classical-armenian-1.0.0.tar.gz.

File metadata

  • Download URL: uniparser-classical-armenian-1.0.0.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.28.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for uniparser-classical-armenian-1.0.0.tar.gz
Algorithm Hash digest
SHA256 708b70cc3b720a81be4457291dc3767eac729086f63efea666ad1b9dab2cc1a3
MD5 81382740f589792fb05c390a41b7ae55
BLAKE2b-256 ae80491adcabf86d5a06420fe1c9dff293fbb38d87a4754db85af467bcc58045

See more details on using hashes here.

File details

Details for the file uniparser_classical_armenian-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: uniparser_classical_armenian-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.28.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for uniparser_classical_armenian-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 30c939b3c86f159d7975e0fcdb9e5264ca8c71d81fe9c315c9f37f4e6aab3029
MD5 d856a2edefd04d98d13175ac1011f5de
BLAKE2b-256 eb72a9b296d0c431ad16d52eae086043cdc922bcca39be1143ae6d635818fdba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page