Rule-based morphological analysis for Turoyo
Project description
Turoyo morphological analyzer
This is a rule-based morphological analyzer for Ṭuroyo (tru
, Afro-Asiatic > Central Neo-Aramaic). It is based on a formalized description of Turoyo morphology and uses uniparser-morph for parsing. It performs full morphological analysis of Turoyo words (lemmatization, POS tagging, grammatical tagging). The text to be analyzed should be written in a version of Latin Turoyo alphabet which is somewhat closer to IPA: it uses ʔ instead of ', ʕ instead of c, ə insteadt of ë etc.
How to use
Python package
The analyzer is available as a Python package. If you want to analyze Turoyo texts in Python, install the module:
pip3 install uniparser-turoyo
Import the module and create an instance of TuroyoAnalyzer
class. Set mode='strict'
if you are going to process text in standard Latin Turoyo alphabet, or mode='nodiacritics'
if you expect some words to lack the diacritics (e.g. t instead of ṭ). After that, you can either parse tokens or lists of tokens with analyze_words()
, or parse a frequency list with analyze_wordlist()
. Here is a simple example:
from uniparser_turoyo import TuroyoAnalyzer
a = TuroyoAnalyzer(mode='strict')
analyses = a.analyze_words('koroḥamnux')
# The parser is initialized before first use, so expect
# some delay here (usually several seconds)
# You will get a list of Wordform objects
# The analysis attributes are stored in its properties
# as string values, e.g.:
for ana in analyses:
print(ana.wf, ana.lemma, ana.gramm)
# You can also pass lists (even nested lists) and specify
# output format ('xml', 'json' or 'conll')
# If you pass a list, you will get a list of analyses
# with the same structure
analyses = a.analyze_words([['koroḥamnux'], ['ʕəbarwo', 'lab', 'bote', '.']],
format='xml')
analyses = a.analyze_words([['koroḥamnux'], ['ʕəbarwo', 'lab', 'bote', '.']],
format='conll')
analyses = a.analyze_words(['koroḥamnux', [['laḥmawo'], ['ʕəbarwo', 'lab', 'bote', '.']]],
format='json')
Refer to the uniparser-morph documentation for the full list of options.
If you want to quickly check an analysis for one particular word, you can also use the command-line interface. Here is an example for the word koroḥamnux:
python3 -m uniparser_turoyo koroḥamnux
Word lists
Alternatively, you can use a preprocessed word list. The wordlists
directory contains a list of words from a 600-thousand-word Ṭuroyo corpus (wordlist.csv
) with 53,000 unique tokens, list of analyzed tokens (wordlist_analyzed.txt
; each line contains all possible analyses for one word in an XML format), and list of tokens the parser could not analyze (wordlist_unanalyzed.txt
). The recall of the analyzer on the corpus texts is about 90%. (This number is somewhat low due to orthographic variability in the texts.)
Description format
The description is carried out in the uniparser-morph
format and involves a description of the inflection (paradigms/paradigms_XXX.txt) and a grammatical dictionary (lexemes/lexemes-XXX.txt files). The dictionary contains descriptions of individual lexemes, each of which is accompanied by information about its stem, its part-of-speech tag and some other grammatical information, its consonant root, its inflectional type (paradigm), and English and/or German translations. See more about the format in the uniparser-morph documentation.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file uniparser-turoyo-1.1.2.tar.gz
.
File metadata
- Download URL: uniparser-turoyo-1.1.2.tar.gz
- Upload date:
- Size: 1.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.28.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d3cfd6f83f21b722c11a4c4b1c014aa8075340d628dfa5e83623fbea30ffb900 |
|
MD5 | 34d8e39cec19591af87c7642f2b79f1e |
|
BLAKE2b-256 | 1c8420245007748f317aef3f1950a5d33d46d666de69178b15df53aac56cb39a |
File details
Details for the file uniparser_turoyo-1.1.2-py3-none-any.whl
.
File metadata
- Download URL: uniparser_turoyo-1.1.2-py3-none-any.whl
- Upload date:
- Size: 1.2 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.28.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | eb8d55b6e2f20b71c316ccc9555849a9032c4aaeaa46a24227a9c34fec174755 |
|
MD5 | 7eef7bab677ebce0a65b2385bc40f63f |
|
BLAKE2b-256 | 9ae67c46dfdf7fc1c3ae26f37a2653e2d482034772d708d9c788588d5dab9faf |