Simple implementation of the Temporal Outlier Factor
Project description
The uniqed package
Simple python implementation of the Temporal Outlier Factor [1] (TOF) anomaly detection method.
Installation instructions
Install it directly from PyPI:
pip install uniqed
Simple example
This is a simple example:
from uniqed.data.gen_logmap import generate_logmapdata
from uniqed.runners.tof_run import detect_outlier
import matplotlib.pyplot as plt
# Generate some data
data_df = generate_logmapdata(rseed=359)
# Detect outliers
res_df = detect_outlier(data_df[['value']], cutoff_n=80)
# plot the results
fig, axs = plt.subplots(2, 1, sharex=True)
fig.suptitle('TOF anomaly detection demo')
axs[0].plot(res_df['value'], color='tab:blue', label='time series')
axs[0].plot(res_df['value'].loc[data_df.query("is_anomaly==1").index.values],
color='tab:green', label='anomaly')
axs[0].plot(res_df.query("TOF==1")['value'], lw=0, marker='o',
color='tab:orange', label='TOF detections')
axs[0].set_ylabel('values')
axs[0].legend(loc='upper left', framealpha=1)
axs[1].plot(res_df['TOF_score'], color='k', label='TOF score')
axs[1].plot(res_df['TOF_score'].loc[data_df.query("is_anomaly==1").index.values],
color='tab:green', label='anomaly')
axs[1].plot(res_df.query("TOF==1")['TOF_score'], lw=0, marker='o',
color='tab:orange', label='TOF')
axs[1].set_ylabel('TOF score')
axs[1].set_xlabel('t')
axs[1].legend(['TOF score', 'anomaly', 'TOF detections'],
loc='upper left',
framealpha=1)
axs[1].set_xlim(0, 2000)
axs[0].grid(True)
axs[1].grid(True)
fig.tight_layout(rect=[0, 0, 1, 1], pad=1, h_pad=0, w_pad=0)
fig.savefig("example_run.png")
plt.show()
References
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
uniqed-0.0.2.tar.gz
(477.4 kB
view details)
Built Distribution
uniqed-0.0.2-py3-none-any.whl
(17.7 kB
view details)
File details
Details for the file uniqed-0.0.2.tar.gz
.
File metadata
- Download URL: uniqed-0.0.2.tar.gz
- Upload date:
- Size: 477.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2d272b965504548e5a51e929830d7432c8dca020329cf9f18761462da8b2d6be |
|
MD5 | 355838b0dd92847352c235bbbeb387f0 |
|
BLAKE2b-256 | 52cfb46b90a56d28b3d31a0f64697337abbd2cc1e41b3aae3dd64c647f3ba9ef |
File details
Details for the file uniqed-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: uniqed-0.0.2-py3-none-any.whl
- Upload date:
- Size: 17.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9a1952525473619b9d3f6ef56f8f3b3e3d1f71cbd990914a9d703975038f36c8 |
|
MD5 | 5ed5a24dd987d056ee28e29ecfba7f9d |
|
BLAKE2b-256 | 2e70555cdd5528aa5547e020d240327a7b869024e535e7cd623895c0957b06e8 |