No project description provided
Project description
Unique Python SDK
Unique FinanceGPT is a tailored solution for the financial industry, designed to increase productivity by automating manual workloads through AI and ChatGPT solutions.
The Unique Python SDK provides access to the public API of Unique FinanceGPT. It also enables verification of Webhook signatures to ensure the authenticity of incoming Webhook requests.
Table of Contents
- Installation
- Requirements
- Usage Instructions
- Webhook Triggers
- Available API Resources
- Error Handling
- Examples
Installation
Install UniqueSDK and its peer dependency requests
via pip using the following commands:
pip install unique_sdk
pip install requests
Requirements
- Python >=3.11 (Other Python versions 3.6+ might work but are not tested)
- requests (peer dependency. Other HTTP request libraries might be supported in the future)
- Unique App-ID & API Key
Please contact your customer success manager at Unique for your personal developer App-ID & API Key.
Usage instructions
The library needs to be configured with your Unique app_id
& api_key
. Additionally, each individual request must be scoped to a User and provide a user_id
& company_id
.
import unique_sdk
unique_sdk.api_key = "ukey_..."
unique_sdk.app_id = "app_..."
The SDK includes a set of classes for API resources. Each class contains CRUD methods to interact with the resource.
Example
import unique_sdk
unique_sdk.api_key = "ukey_..."
unique_sdk.app_id = "app_..."
# list messages for a single chat
messages = unique_sdk.Message.list(
user_id=user_id,
company_id=company_id,
chatId=chat_id,
)
print(messages.data[0].text)
Webhook Triggers
A core functionality of FinanceGPT is the ability for users to engage in an interactive chat feature. SDK developers can hook into this chat to provide new functionalities.
Your App (refer to app-id
in Requirements) must be subscribed to each individual Unique event in order to receive a webhook.
Each webhook sent by Unique includes a set of headers:
X-Unique-Id: evt_... # Event id, same as in the body.
X-Unique-Signature: ... # A HMAC-SHA256 hex signature of the entire body.
X-Unique-Version: 1.0.0 # Event payload version.
X-Unique-Created-At: 1705960141 # Unix timestamp (seconds) of the delivery time.
X-Unique-User-Id: ... # The user who initiated the message.
X-Unique-Company-Id: ... # The company to which the user belongs.
Success & Retry on Failure
- Webhooks are considered successfully delivered if your endpoint returns a status code between
200
and299
. - If your endpoint returns a status code of
300
-399
,429
, or500
-599
, Unique will retry the delivery of the webhook with an exponential backoff up to five times. - If your endpoint returns any other status (e.g.,
404
), it is marked as expired and will not receive any further requests.
Webhook Signature Verification
The webhook body, containing a timestamp of the delivery time, is signed with HMAC-SHA256. Verify the signature by constructing the event
with the unique_sdk.Webhook
class:
from http import HTTPStatus
from flask import Flask, jsonify, request
import unique_sdk
endpoint_secret = "YOUR_ENDPOINT_SECRET"
@app.route("/webhook", methods=["POST"])
def webhook():
event = None
payload = request.data
sig_header = request.headers.get("X-Unique-Signature")
timestamp = request.headers.get("X-Unique-Created-At")
if not sig_header or not timestamp:
print("⚠️ Webhook signature or timestamp headers missing.")
return jsonify(success=False), HTTPStatus.BAD_REQUEST
try:
event = unique_sdk.Webhook.construct_event(
payload, sig_header, timestamp, endpoint_secret
)
except unique_sdk.SignatureVerificationError as e:
print("⚠️ Webhook signature verification failed. " + str(e))
return jsonify(success=False), HTTPStatus.BAD_REQUEST
The construct_event
method will compare the signature and raise a unique_sdk.SignatureVerificationError
if the signature does not match. It will also raise this error if the createdAt
timestamp is outside of a default tolerance of 5 minutes. Adjust the tolerance
by passing a fifth parameter to the method (tolerance in seconds), e.g.:
event = unique_sdk.Webhook.construct_event(
payload, sig_header, timestamp, endpoint_secret, 0
)
Available Unique Events
User Message Created
{
"id": "evt_...", // see header
"version": "1.0.0", // see header
"event": "unique.chat.user-message.created", // The name of the event
"createdAt": "1705960141", // see header
"userId": "...", // see header
"companyId": "...", // see header
"payload": {
"chatId": "chat_...", // The id of the chat
"assistantId": "assistant_...", // The id of the selected assistant
"text": "Hello, how can I help you?" // The user message
}
}
This webhook is triggered for every new chat message sent by the user. This event occurs regardless of whether it is the first or a subsequent message in a chat. Use the unique_sdk.Message
class to retrieve other messages from the same chatId
or maintain a local state of the messages in a single chat.
This trigger can be used in combination with assistants marked as external
. Those assistants will not execute any logic, enabling your code to respond to the user message and create an answer.
External Module Chosen
{
"id": "evt_...",
"version": "1.0.0",
"event": "unique.chat.external-module.chosen",
"createdAt": "1705960141", // Unix timestamp (seconds)
"userId": "...",
"companyId": "...",
"payload": {
"name": "example-sdk", // The name of the module selected by the module chooser
"description": "Example SDK", // The description of the module
"configuration": {}, // Module configuration in JSON format
"chatid": "chat_...", // The chat ID
"assistantId:": "assistant_...", // The assistant ID
"userMessage": {
"id": "msg_...",
"text": "Hello World!", // The user message leading to the module selection
"createdAt": "2024-01-01T00:00:00.000Z" // ISO 8601
},
"assistantMessage": {
"id": "msg_...",
"createdAt": "2024-01-01T00:00:00.000Z" // ISO 8601
}
}
}
This Webhook is triggered when the Unique FinanceGPT AI selects an external module as the best response to a user message. The module must be marked as external
and available for the assistant used in the chat to be selected by the AI.
Unique's UI will create an empty assistantMessage
below the user message and update this message with status updates.
The SDK is expected to modify this assistantMessage with its answer to the user message.
unique_sdk.Message.modify(
user_id=user_id,
company_id=company_id,
id=assistant_message_id,
chatId=chat_id,
text="Here is your answer.",
)
Available API Resources
Message
unique_sdk.Message.list
Retrieve a list of messages for a provided chatId
.
messages = unique_sdk.Message.list(
user_id=user_id,
company_id=company_id,
chatId=chat_id,
)
unique_sdk.Message.retrieve
Get a single chat message.
message = unique_sdk.Message.retrieve(
user_id=user_id,
company_id=company_id,
id=message_id,
chatId=chat_id,
)
unique_sdk.Message.create
Create a new message in a chat.
message = unique_sdk.Message.create(
user_id=user_id,
company_id=company_id,
chatId=chat_id,
assistantId=assistant_id,
text="Hello.",
role="ASSISTANT",
)
unique_sdk.Message.modify
Modify an existing chat message.
message = unique_sdk.Message.modify(
user_id=user_id,
company_id=company_id,
id=message_id,
chatId=chat_id,
text="Updated message text"
)
unique_sdk.Message.delete
Delete a chat message.
message = unique_sdk.Message.delete(
message_id,
user_id=user_id,
company_id=company_id,
chatId=chat_id,
)
unique_sdk.Integrated.stream
Streams the answer to the chat frontend. Given the messages.
if the stream creates [source0] it is referenced with the references from the search context.
E.g.
Hello this information is from [srouce1]
adds the reference at index 1 and then changes the text to:
Hello this information is from <sub>0</sub>
unique_sdk.Integrated.chat_stream_completion(
user_id=userId,
company_id=companyId,
assistantMessageId=assistantMessageId,
userMessageId=userMessageId,
messages=[
{
"role": "system",
"content": "be friendly and helpful"
},
{
"role": "user",
"content": "hello"
}
],
chatId=chatId,
searchContext= [
{
"id": "ref_qavsg0dcl5cbfwm1fvgogrvo",
"chunkId": "0",
"key": "some reference.pdf : 8,9,10,11",
"sequenceNumber": 1,
"url": "unique://content/cont_p8n339trfsf99oc9f36rn4wf"
}
], # optional
debugInfo={
"hello": "test"
}, # optional
startText= "I want to tell you about: ", # optional
model= "AZURE_GPT_4_32K_0613", # optional
timeout=8000, # optional in ms
temperature=0.3, # optional
)
Warning: Currently, the deletion of a chat message does not automatically sync with the user UI. Users must refresh the chat page to view the updated state. This issue will be addressed in a future update of our API.
Chat Completion
unique_sdk.ChatCompletion.create
Send a prompt to an AI model supported by Unique FinanceGPT and receive a result. The messages
attribute must follow the OpenAI API format.
chat_completion = unique_sdk.ChatCompletion.create(
company_id=company_id,
model="AZURE_GPT_35_TURBO",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"},
]
)
Search
unique_sdk.Search.create
Search the Unique FinanceGPT Knowledge database for RAG (Retrieval-Augmented Generation). The API supports vector search and a searchType
that combines vector and full-text search, enhancing the precision of search results.
These are the options are available for searchType
:
VECTOR
COMBINED
limit
(max 1000) and page
are optional for iterating over results.
chatOnly
Restricts the search exclusively to documents uploaded within the chat.
scopeIds
Specifies a collection of scope IDs to confine the search.
search = unique_sdk.Search.create(
user_id,
company_id,
chatId=chat_id
searchString="What is the meaning of life, the universe and everything?",
searchType="VECTOR",
chatOnly=false,
scopeIds=["scope_..."],
limit=20,
page=1
)
Search String
unique_sdk.SearchString.create
User messages are sometimes suboptimal as input prompts for vector or full-text knowledge base searches. This is particularly true as a conversation progresses and a user question may lack crucial context for a successful search.
This API transforms and translates (into English) the user's message into an ideal search string for use in the Search.create API method.
Adding a chatId
or messages
as arguments allows the message history to provide additional context to the search string. For example, "Who is the author?" will be expanded to "Who is the author of the book 'The Hitchhiker's Guide to the Galaxy'?" if previous messages referenced the book.
search_string = unique_sdk.SearchString.create(
user_id,
company_id,
prompt="Was ist der Sinn des Lebens, des Universums und des ganzen Rests?",
chat_id=chat_id
)
Error Handling
Examples
An example Flask app demonstrating the usage of each API resource and how to interact with Webhooks is available in our repository at /examples/custom-assistant
.
Credits
This is a fork / inspired-by the fantastic Stripe Python SDK (https://github.com/stripe/stripe-python).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for unique_sdk-0.7.3-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fcd290e1cf718af7355d5d68de90354acefc89b8f9ad26d371519d22c669e476 |
|
MD5 | 1b768c77b1f9f7a1e01e7bd19f099841 |
|
BLAKE2b-256 | 73647b8e9cd4e83f863520c12bf9c373c8b81fc2da2170cd4fadc31475eedaf7 |