Skip to main content

No project description provided

Project description

Unique Python SDK

Unique FinanceGPT is a tailored solution for the financial industry, designed to increase productivity by automating manual workloads through AI and ChatGPT solutions.

The Unique Python SDK provides access to the public API of Unique FinanceGPT. It also enables verification of Webhook signatures to ensure the authenticity of incoming Webhook requests.

Table of Contents

  1. Installation
  2. Requirements
  3. Usage Instructions
  4. Webhook Triggers
  5. Available API Resources
  6. UniqueQL
  7. Util functions
  8. Error Handling
  9. Examples

Installation

Install UniqueSDK and its peer dependency requests via pip using the following commands:

pip install unique_sdk
pip install requests

Requirements

  • Python >=3.11 (Other Python versions 3.6+ might work but are not tested)
  • requests (peer dependency. Other HTTP request libraries might be supported in the future)
  • Unique App-ID & API Key

Please contact your customer success manager at Unique for your personal developer App-ID & API Key.

Usage instructions

The library needs to be configured with your Unique app_id & api_key. Additionally, each individual request must be scoped to a User and provide a user_id & company_id.

import unique_sdk
unique_sdk.api_key = "ukey_..."
unique_sdk.app_id = "app_..."

The SDK includes a set of classes for API resources. Each class contains CRUD methods to interact with the resource.

Example

import unique_sdk
unique_sdk.api_key = "ukey_..."
unique_sdk.app_id = "app_..."

# list messages for a single chat
messages = unique_sdk.Message.list(
    user_id=user_id,
    company_id=company_id,
    chatId=chat_id,
)

print(messages.data[0].text)

Webhook Triggers

A core functionality of FinanceGPT is the ability for users to engage in an interactive chat feature. SDK developers can hook into this chat to provide new functionalities.

Your App (refer to app-id in Requirements) must be subscribed to each individual Unique event in order to receive a webhook.

Each webhook sent by Unique includes a set of headers:

X-Unique-Id: evt_... # Event id, same as in the body.
X-Unique-Signature: ... # A HMAC-SHA256 hex signature of the entire body.
X-Unique-Version: 1.0.0 # Event payload version.
X-Unique-Created-At: 1705960141 # Unix timestamp (seconds) of the delivery time.
X-Unique-User-Id: ... # The user who initiated the message.
X-Unique-Company-Id: ... # The company to which the user belongs.

Success & Retry on Failure

  • Webhooks are considered successfully delivered if your endpoint returns a status code between 200 and 299.
  • If your endpoint returns a status code of 300 - 399, 429, or 500 - 599, Unique will retry the delivery of the webhook with an exponential backoff up to five times.
  • If your endpoint returns any other status (e.g., 404), it is marked as expired and will not receive any further requests.

Webhook Signature Verification

The webhook body, containing a timestamp of the delivery time, is signed with HMAC-SHA256. Verify the signature by constructing the event with the unique_sdk.Webhook class:

from http import HTTPStatus
from flask import Flask, jsonify, request
import unique_sdk

endpoint_secret = "YOUR_ENDPOINT_SECRET"

@app.route("/webhook", methods=["POST"])
def webhook():
    event = None
    payload = request.data

    sig_header = request.headers.get("X-Unique-Signature")
    timestamp = request.headers.get("X-Unique-Created-At")

    if not sig_header or not timestamp:
        print("⚠️  Webhook signature or timestamp headers missing.")
        return jsonify(success=False), HTTPStatus.BAD_REQUEST

    try:
        event = unique_sdk.Webhook.construct_event(
            payload, sig_header, timestamp, endpoint_secret
        )
    except unique_sdk.SignatureVerificationError as e:
        print("⚠️  Webhook signature verification failed. " + str(e))
        return jsonify(success=False), HTTPStatus.BAD_REQUEST

The construct_event method will compare the signature and raise a unique_sdk.SignatureVerificationError if the signature does not match. It will also raise this error if the createdAt timestamp is outside of a default tolerance of 5 minutes. Adjust the tolerance by passing a fifth parameter to the method (tolerance in seconds), e.g.:

event = unique_sdk.Webhook.construct_event(
    payload, sig_header, timestamp, endpoint_secret, 0
)

Available Unique Events

User Message Created

{
  "id": "evt_...", // see header
  "version": "1.0.0", // see header
  "event": "unique.chat.user-message.created", // The name of the event
  "createdAt": "1705960141", // see header
  "userId": "...", // see header
  "companyId": "...", // see header
  "payload": {
    "chatId": "chat_...", // The id of the chat
    "assistantId": "assistant_...", // The id of the selected assistant
    "text": "Hello, how can I help you?" // The user message
  }
}

This webhook is triggered for every new chat message sent by the user. This event occurs regardless of whether it is the first or a subsequent message in a chat. Use the unique_sdk.Message class to retrieve other messages from the same chatId or maintain a local state of the messages in a single chat.

This trigger can be used in combination with assistants marked as external. Those assistants will not execute any logic, enabling your code to respond to the user message and create an answer.

External Module Chosen

{
  "id": "evt_...",
  "version": "1.0.0",
  "event": "unique.chat.external-module.chosen",
  "createdAt": "1705960141", // Unix timestamp (seconds)
  "userId": "...",
  "companyId": "...",
  "payload": {
    "name": "example-sdk", // The name of the module selected by the module chooser
    "description": "Example SDK", // The description of the module
    "configuration": {}, // Module configuration in JSON format
    "chatid": "chat_...", // The chat ID
    "assistantId:": "assistant_...", // The assistant ID
    "userMessage": {
      "id": "msg_...",
      "text": "Hello World!", // The user message leading to the module selection
      "createdAt": "2024-01-01T00:00:00.000Z" // ISO 8601
    },
    "assistantMessage": {
      "id": "msg_...",
      "createdAt": "2024-01-01T00:00:00.000Z" // ISO 8601
    }
  }
}

This Webhook is triggered when the Unique FinanceGPT AI selects an external module as the best response to a user message. The module must be marked as external and available for the assistant used in the chat to be selected by the AI.

Unique's UI will create an empty assistantMessage below the user message and update this message with status updates.

The SDK is expected to modify this assistantMessage with its answer to the user message.

unique_sdk.Message.modify(
    user_id=user_id,
    company_id=company_id,
    id=assistant_message_id,
    chatId=chat_id,
    text="Here is your answer.",
)

Available API Resources

Content

unique_sdk.Content.search

Allows you to load full content/files from the knowledge-base of unique with the rights of the userId and companyId. Provided a where query for filtering. Filtering can be done on any of the following fields: `

  • id
  • key
  • ownerId
  • title
  • url

Here an example of retrieving all files that contain the number 42 in the title or the key typically this is used to search by filename.

unique_sdk.Content.search(
    user_id=userId,
    company_id=companyId,
    where={
        "OR": [
            {
                "title": {
                    "contains": "42",
                },
            },
            {
                "key": {
                    "contains": "42",
                },
            },
        ],
    },
    chatId=chatId,
)

unique_sdk.Content.upsert

Enables upload of a new Content into the Knowledge base of unique into a specific scope with scopeId.

Typical usage is the following. That creates a Content and uploads a file

createdContent = upload_file(
    userId,
    companyId,
    "/path/to/file.pdf",
    "test.pdf",
    "application/pdf",
    "scope_stcj2osgbl722m22jayidx0n",
)

def upload_file(
    userId,
    companyId,
    path_to_file,
    displayed_filename,
    mimeType,
    scope_or_unique_path,
):
    size = os.path.getsize(path_to_file)
    createdContent = unique_sdk.Content.upsert(
        user_id=userId,
        company_id=companyId,
        input={
            "key": displayed_filename,
            "title": displayed_filename,
            "mimeType": mimeType,
        },
        scopeId=scope_or_unique_path,
    )

    uploadUrl = createdContent.writeUrl

    # upload to azure blob storage SAS url uploadUrl the pdf file translatedFile make sure it is treated as a application/pdf
    with open(path_to_file, "rb") as file:
        requests.put(
            uploadUrl,
            data=file,
            headers={
                "X-Ms-Blob-Content-Type": mimeType,
                "X-Ms-Blob-Type": "BlockBlob",
            },
        )

    unique_sdk.Content.upsert(
        user_id=userId,
        company_id=companyId,
        input={
            "key": displayed_filename,
            "title": displayed_filename,
            "mimeType": mimeType,
            "byteSize": size,
        },
        scopeId=scope_or_unique_path,
        readUrl=createdContent.readUrl,
    )

    return createdContent

Message

unique_sdk.Message.list

Retrieve a list of messages for a provided chatId.

messages = unique_sdk.Message.list(
    user_id=user_id,
    company_id=company_id,
    chatId=chat_id,
)

unique_sdk.Message.retrieve

Get a single chat message.

message = unique_sdk.Message.retrieve(
    user_id=user_id,
    company_id=company_id,
    id=message_id,
    chatId=chat_id,
)

unique_sdk.Message.create

Create a new message in a chat.

message = unique_sdk.Message.create(
    user_id=user_id,
    company_id=company_id,
    chatId=chat_id,
    assistantId=assistant_id,
    text="Hello.",
    role="ASSISTANT",
)

unique_sdk.Message.modify

Modify an existing chat message.

ℹ️ if you modify the debugInfo only do it on the user message as this is the only place that is displayed in the frontend.

message = unique_sdk.Message.modify(
    user_id=user_id,
    company_id=company_id,
    id=message_id,
    chatId=chat_id,
    text="Updated message text"
)

unique_sdk.Message.delete

Delete a chat message.

message = unique_sdk.Message.delete(
    message_id,
    user_id=user_id,
    company_id=company_id,
    chatId=chat_id,
)

unique_sdk.Integrated.stream

Streams the answer to the chat frontend. Given the messages.

if the stream creates [source0] it is referenced with the references from the search context.

E.g.

Hello this information is from [srouce1]

adds the reference at index 1 and then changes the text to:

Hello this information is from <sub>0</sub>
unique_sdk.Integrated.chat_stream_completion(
    user_id=userId,
    company_id=companyId,
    assistantMessageId=assistantMessageId,
    userMessageId=userMessageId,
    messages=[
        {
            "role": "system",
            "content": "be friendly and helpful"
        },
        {
            "role": "user",
            "content": "hello"
        }
    ],
    chatId=chatId,

    searchContext=  [
        {
            "id": "ref_qavsg0dcl5cbfwm1fvgogrvo",
            "chunkId": "0",
            "key": "some reference.pdf : 8,9,10,11",
            "sequenceNumber": 1,
            "url": "unique://content/cont_p8n339trfsf99oc9f36rn4wf"
        }
    ],  # optional
    debugInfo={
        "hello": "test"
    }, # optional
    startText= "I want to tell you about: ", # optional
    model= "AZURE_GPT_4_32K_0613", # optional
    timeout=8000,  # optional in ms
    temperature=0.3,  # optional
)

Warning: Currently, the deletion of a chat message does not automatically sync with the user UI. Users must refresh the chat page to view the updated state. This issue will be addressed in a future update of our API.

Chat Completion

unique_sdk.ChatCompletion.create

Send a prompt to an AI model supported by Unique FinanceGPT and receive a result. The messages attribute must follow the OpenAI API format.

chat_completion = unique_sdk.ChatCompletion.create(
    company_id=company_id,
    model="AZURE_GPT_35_TURBO",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Hello!"},
    ]
)

Embeddings

unique_sdk.Embeddings.create

Sends an array of text to the AI model for embedding. And retrieve a vector of embeddings.

result = unique_sdk.Embeddings.create(
    user_id=user_id,
    company_id=company_id,
    texts=["hello", "hello"],
)
print(result.embeddings[0][0])

Acronyms

unique_sdk.Acronyms.get

Fetches the acronyms defined on the company. Often used to replace in user prompts, so the acronym is resolved to give better guidance to the LLM during completion.

result = unique_sdk.Acronyms.get(
    user_id=user_id,
    company_id=company_id,
)
print(result)

Search

unique_sdk.Search.create

Search the Unique FinanceGPT Knowledge database for RAG (Retrieval-Augmented Generation). The API supports vector search and a searchType that combines vector and full-text search, enhancing the precision of search results.

These are the options are available for searchType:

  • VECTOR
  • COMBINED

limit (max 1000) and page are optional for iterating over results. chatOnly Restricts the search exclusively to documents uploaded within the chat. scopeIds Specifies a collection of scope IDs to confine the search.

search = unique_sdk.Search.create(
    user_id,
    company_id,
    chatId=chat_id
    searchString="What is the meaning of life, the universe and everything?",
    searchType="VECTOR",
    chatOnly=false,
    scopeIds=["scope_..."],
    limit=20,
    page=1
)

Search String

unique_sdk.SearchString.create

User messages are sometimes suboptimal as input prompts for vector or full-text knowledge base searches. This is particularly true as a conversation progresses and a user question may lack crucial context for a successful search.

This API transforms and translates (into English) the user's message into an ideal search string for use in the Search.create API method.

Adding a chatId or messages as arguments allows the message history to provide additional context to the search string. For example, "Who is the author?" will be expanded to "Who is the author of the book 'The Hitchhiker's Guide to the Galaxy'?" if previous messages referenced the book.

search_string = unique_sdk.SearchString.create(
    user_id,
    company_id,
    prompt="Was ist der Sinn des Lebens, des Universums und des ganzen Rests?",
    chat_id=chat_id
)

Short Term Memory

For saving data in between chats there is the Short Term Memory functionality to save small data in between rounds of chat e.g. language, search results and so on. For this 10k chars can be used. You can save a short term memory for a chat chatId or for a message messageId. you need to provide an memoryName as an identifier.

you can then save it and retreive it live defined below.

unique_sdk.ShortTermMemory.create

c = unique_sdk.ShortTermMemory.create(
    user_id,
    company_id,
    data="hello",
    chatId="chat_x0xxtj89f7drjp4vmued3q",
    # messageId = "msg_id",
    memoryName="your memory name",
)
print(c)

unique_sdk.ShortTermMemory.find-latest

m = unique_sdk.ShortTermMemory.find_latest(
    user_id,
    company_id,
    chatId="chat_x0xxtj89f7drjp4vmued3q",
     # messageId = "msg_id",
    memoryName="your memory name",
)
print(m)

UniqueQL

UniqueQL is an advanced query language designed to enhance search capabilities within various search modes such as Vector, Full-Text Search (FTS), and Combined. This query language enables users to perform detailed searches by filtering through metadata attributes like filenames, URLs, dates, and more. UniqueQL is versatile and can be translated into different query formats for various database systems, including PostgreSQL and Qdrant.

UniqueQL Query Structure

A UniqueQL query is composed of a path, an operator, and a value. The path specifies the metadata attribute to be filtered, the operator defines the type of comparison, and the value provides the criteria for the filter.

A metadata filter can be designed with UniqueQL's UQLOperator and UQLCombinator as follows:

metadata_filter = {
        "path": ['diet', '*'],
        "operator": UQLOperator.NESTED,
        "value": {
            UQLCombinator.OR : [
                {
                    UQLCombinator.OR: [
                        {
                            "path": ['food'],
                            "operator": UQLOperator.EQUALS,
                            "value": "meat",
                        },
                        {
                            "path": ['food'],
                            "operator": UQLOperator.EQUALS,
                            "value": 'vegis',
                        },
                    ],
                },
                {
                    "path": ['likes'],
                    "operator": UQLOperator.EQUALS,
                    "value": true,
                },
            ],
        },
    }

Metadata Filtering

A metadata filter such as the one designed above can be used in a Search.create call by passing it the metaDataFilter parameter.

    search_results = unique_sdk.Search.create(
        user_id=user_id,
        company_id=company_id,
        chatId=chat_id,
        searchString=search_string,
        searchType="COMBINED",
        # limit=2,
        metaDataFilter=metadata_filter,
    )

Utils

Chat History

unique_sdk.util.chat_history.load_history

A helper function that makes sure the chat history is fully loaded and cut to the size of the token window that it fits into the next round of chat interactions.

  • maxTokens max tokens of the model used
  • percentOfMaxTokens=0.15 % max history in % of maxTokens
  • maxMessages=4, maximal number of messages included in the history.

this method also directly returns a correct formatted history that can be used in the next chat round.

history = unique_sdk.utils.chat_history.load_history(
    userId,
    companyId,
    chatId
)

unique_sdk.util.chat_history.convert_chat_history_to_injectable_string

convert history into a string that can be injected into a prompt. it als returns the token length of the converted history.

chat_history-string, chat_context_token_length = unique_sdk.utils.chat_history.convert_chat_history_to_injectable_string(
    history
)

File Io

Interacting with the knowledge-base.

unique_sdk.util.file_io.download_content

download files and save them into a folder in /tmp

for example using the readUrl from a content.

pdfFile = download_content(
    userId,
    companyId,
    content_id="cont_12412",
    filename="hello.pdf",
    chat_id=None # If specified, it downloads it from the chat
}

unique_sdk.util.file_io.upload_file

Allows for uploading files that then get ingested.

createdContent = upload_file(
    userId,
    companyId,
    path_to_file="/tmp/hello.pdf",
    displayed_filename="hello.pdf",
    mimeType="application/pdf",
    uploadScope="scope_stcj2osgbl722m22jayidx0n",
)

Sources

unique_sdk.util.sources.merge_sources

Merges multiple search results based on their 'id', removing redundant document and info markers.

This function groups search results by their 'id' and then concatenates their texts, cleaning up any document or info markers in subsequent chunks beyond the first one.

Parameters:

  • searchContext (list): A list of dictionaries, each representing a search result with 'id' and 'text' keys.

Returns:

  • list: A list of dictionaries with merged texts for each unique 'id'.

searchContext is an list of search objects that are returned by the search.

search = unique_sdk.Search.create(
    user_id=userId,
    company_id=companyId,
    chatId=chatId,
    searchString="Who is Harry P?",
    searchType="COMBINED",
    scopeIds="scope_dsf...",
    limit=30,
    chatOnly=False,
)

searchContext = unique_sdk.util.token.pick_search_results_for_token_window(
        search["data"], config["maxTokens"] - historyLength
    )

searchContext = unique_sdk.util.sources.merge_sources(search)

unique_sdk.util.sources.sort_sources

Sort sources by order of appearance in documents

search = unique_sdk.Search.create(
    user_id=userId,
    company_id=companyId,
    chatId=chatId,
    searchString="Who is Harry P?",
    searchType="COMBINED",
    scopeIds="scope_dsf...",
    limit=30,
    chatOnly=False,
)

searchContext = unique_sdk.util.token.pick_search_results_for_token_window(
        search["data"], config["maxTokens"] - historyLength
    )

searchContext = unique_sdk.util.sources.sort_sources(search)

unique_sdk.util.sources.post_process_sources

Post-processes the provided text by converting source references into superscript numerals (required format by backend to display sources in the chat window)

This function searches the input text for patterns that represent source references (e.g., [source1]) and replaces them with superscript tags, incrementing the number by one.

Parameters:

  • text (str): The text to be post-processed.

Returns:

  • str: The text with source references replaced by superscript numerals.

Examples:

  • postprocessSources("This is a reference [source0]") will return "This is a reference 1".
text_with_sup = post_process_sources(text)

Token

unique_sdk.util.token.pick_search_results_for_token_window

Selects and returns a list of search results that fit within a specified token limit.

This function iterates over a list of search results, each with a 'text' field, and encodes the text using a predefined encoding scheme. It accumulates search results until the token limit is reached or exceeded.

Parameters:

  • searchResults (list): A list of dictionaries, each containing a 'text' key with string value.
  • tokenLimit (int): The maximum number of tokens to include in the output.

Returns:

  • list: A list of dictionaries representing the search results that fit within the token limit.
search = unique_sdk.Search.create(
    user_id=userId,
    company_id=companyId,
    chatId=chatId,
    searchString="Who is Harry P?",
    searchType="COMBINED",
    scopeIds="scope_dsf...",
    limit=30,
    chatOnly=False,
)

searchContext = unique_sdk.util.token.pick_search_results_for_token_window(
        search["data"], config["maxTokens"] - historyLength
    )

unique_sdk.util.token.count_tokens

Counts the number of tokens in the provided text.

This function encodes the input text using a predefined encoding scheme and returns the number of tokens in the encoded text.

Parameters:

  • text (str): The text to count tokens for.

Returns:

  • int: The number of tokens in the text.
hello = "hello you!"
searchContext = unique_sdk.util.token.count_tokens(hello)

Error Handling

Examples

An example Flask app demonstrating the usage of each API resource and how to interact with Webhooks is available in our repository at /examples/custom-assistant.

Credits

This is a fork / inspired-by the fantastic Stripe Python SDK (https://github.com/stripe/stripe-python).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unique_sdk-0.8.6.tar.gz (36.2 kB view hashes)

Uploaded Source

Built Distribution

unique_sdk-0.8.6-py3-none-any.whl (39.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page