A Universal Time-Series Database Python Client
Project description
universal-tsdb
A Universal Time-Series Database Python Client (InfluxDB, Warp10, ...)
Introduction
This project aims to abstract your Time-Series backend, keeping your code as agnostic as possible.
Some examples:
- proof of concept
- early stages of development (when you are not sure which plateform you should use)
- ETL (Extract-Transform-Load), for the load step
:warning: The current code only offer INGESTING functions (writing points to a backend).
Quickstart
Installation
$ pip install universal-tsdb
>>> from universal_tsdb import Client, Ingester
>>> backend = Client('influx', 'http://localhost:8086', database='test')
>>> series = Ingester(backend)
>>> series.append(1585934895000, measurement='data', field1=42.0)
>>> series.payload()
'data field1=42.0 1585934895000000000\n'
>>> series.commit()
InfluxDB
from universal_tsdb import Client, Ingester
backend = Client('influx', 'http://localhost:8086', database='metrics',
backend_username='user', backend_password='passwd')
series = Ingester(backend)
series.append(1585934895000, measurement='mes', field1=42.0)
series.append(1585934896000, measurement='mes', tags={'tag1':'value1'}, field1=43.4, field2='value')
series.commit()
The code above will generate a data payload based on InfluxDB line protocol and send it via a HTTP(S) request.
POST /write?db=metrics&u=user&p=passwd HTTP/1.1
Host: localhost:8086
mes field1=42.0 1585934895000000000
mes,tag1=value1 field1=43.4 field2="value" 1585934896000000000
Warp10
from universal_tsdb import Client, Ingester
backend = Client('warp10', 'http://localhost/api/v0', token='WRITING_TOKEN_ABCDEF0123456789')
series = Ingester(backend)
series.append(1585934895000, field1=42.0)
series.append(1585934896000, tags={'tag1':'value1'}, field1=43.4, field2='value')
series.commit()
The code above will generate a data payload based on Warp10 GTS format and send it via a HTTP(S) request.
POST /api/v0/update HTTP/1.1
Host: localhost
X-Warp10-Token: WRITING_TOKEN_ABCDEF0123456789
1585934895000000// field1{} 42.0
1585934896000000// field1{tag1=value1} 42.0
1585934896000000// field2{tag1=value1} 'value'
Advanced Usage
Batch processing
When you have a large volume of data to send, you may want to split in several HTTP requests. In 'batch'-mode, the library commit (send) the data automatically:
backend = Client('influx', 'http://localhost:8086', database='metrics')
series = Ingester(backend, batch=10)
for i in range(0..26):
series.append(field=i)
series.commit() # final commit to save the last 6 values
Commit#1 Sent 10 new series (total: 10) in 0.02 s @ 2000.0 series/s (total execution: 0.13 s)
Commit#2 Sent 10 new series (total: 20) in 0.02 s @ 2000.0 series/s (total execution: 0.15 s)
Commit#3 Sent 6 new series (total: 26) in 0.01 s @ 2000.0 series/s (total execution: 0.17 s)
REPORT: 3 commits (3 successes), 26 series, 26 values in 0.17 s @ 2000.0 values/s",
Omitting Timestamp
If you omit timestamp, the library uses the function time.time()
to generate a UTC Epoch Time. Precision is system dependent.
Measurement in Warp10
InfluxDB measurement does not exist in Warp10. The library emulates measurement by prefixing the Warp10 classname:
backend = Client('warp10', token='WRITING_TOKEN_ABCDEF0123456789')
series = Ingester(backend)
series.append(1585934895000, measurement='mes', field1=42.0)
series.commit()
1585934896000000// mes.field1{} 42.0
Todo
- API documentation
- Examples
- Data query/fetch functions
- Refactoring of backend specific code (inherited classes?)
- Time-Series Line protocol optimization
- Gzip/deflate HTTP compression
- Code coverage / additional tests
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file universal_tsdb-0.1.1.tar.gz.
File metadata
- Download URL: universal_tsdb-0.1.1.tar.gz
- Upload date:
- Size: 9.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
261d8e57d04c67e6b759f508b31f2505a9c07aa97067352fc05c4257aa8d8153
|
|
| MD5 |
332853587ce3d66b16a50c809531015b
|
|
| BLAKE2b-256 |
7928396d56e846e93b61c540ec0f74daed973671f34dc5610c63b37a44603361
|
File details
Details for the file universal_tsdb-0.1.1-py3-none-any.whl.
File metadata
- Download URL: universal_tsdb-0.1.1-py3-none-any.whl
- Upload date:
- Size: 21.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
5489cbb6013c5c1dfadb67263562d25b5753d41ed7367dd69218308a63237d56
|
|
| MD5 |
87d8acf74e89ae82c9beac2f854233c0
|
|
| BLAKE2b-256 |
1c61160353acedd9d07cdc6b9f3eb70efe0f2e7851cc2e0ed2825d7b8383ad37
|