Skip to main content

Package for Data Rhapsody's UniversityHack 2018 Challenge solution.

Project description

Data Rhapsody UniversityHack2018 Documentation Status

Package for Data Rhapsody’s UniversityHack 2018 Challenge solution.



pip install universityhack2018

Example (easy peasy):

from universityhack2018.prediction import Model
import pandas as pd

clients_df = pd.read_csv('/path/to/Dataset_Salesforce_Predictive_Modelling_TEST.txt')
clients = client_df_train.iloc[0:5, :]

model = Model(clients)
predictions = model.predict(as_df=True)


# Output:
#   ID_Customer        PA_Est
# 0    TE000001  26926.541016
# 1    TE000002  15267.800781
# 2    TE000003  19499.935547
# 3    TE000004  12799.532227
# 4    TE000005  11262.253906


  • TODO


This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.


0.1.0 (2018-03-11)

  • First release on PyPI.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release. See tutorial on generating distribution archives.

Built Distribution

universityhack2018-0.7.0-py2.py3-none-any.whl (2.9 MB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page