Package for Data Rhapsody's UniversityHack 2018 Challenge solution.
Project description
Data Rhapsody UniversityHack2018
Package for Data Rhapsody’s UniversityHack 2018 Challenge solution.
Free software: MIT license
Documentation: https://universityhack2018.readthedocs.io.
Usage
Install:
pip install universityhack2018
Example (easy peasy):
from universityhack2018.prediction import Model import pandas as pd clients_df = pd.read_csv('/path/to/Dataset_Salesforce_Predictive_Modelling_TEST.txt') clients = client_df_train.iloc[0:5, :] model = Model(clients) predictions = model.predict(as_df=True) print(predictions.head()) # Output: # ID_Customer PA_Est # 0 TE000001 26926.541016 # 1 TE000002 15267.800781 # 2 TE000003 19499.935547 # 3 TE000004 12799.532227 # 4 TE000005 11262.253906
Features
TODO
Credits
This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.
History
0.1.0 (2018-03-11)
First release on PyPI.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.
See tutorial on generating distribution archives.
Built Distribution
Close
Hashes for universityhack2018-0.7.0-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0d88fb6e4e50289f57ce7b04c0ad9037fc3529d4b31dfc861a710b0ee50a5222 |
|
MD5 | e31511cf992420faf799c53a75e88b79 |
|
BLAKE2b-256 | 6e4720b771f7db952ab0be252f038272de3d7afe7f6b866cc79abc0db059ecc4 |