Skip to main content

Quantities in JAX

Project description

unxt

Unitful Quantities in JAX


Unxt is unitful quantities and calculations in JAX, built on Equinox and Quax.

Yes, it supports auto-differentiation (grad, jacobian, hessian) and vectorization (vmap, etc).

Installation

PyPI version PyPI platforms

pip install unxt

Documentation

Documentation Status

Quick example

from unxt import Quantity

x = Quantity(jnp.arange(1, 5, dtype=float), "kpc")
print(x)
# Quantity['length'](Array([1., 2., 3., 4.], dtype=float64), unit='kpc')

# Addition / Subtraction
print(x + x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

# Multiplication / Division
print(2 * x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

y = Quantity(jnp.arange(4, 8, dtype=float), "Gyr")

print(x / y)
# Quantity['speed'](Array([0.25      , 0.4       , 0.5       , 0.57142857], dtype=float64), unit='kpc / Gyr')

# Exponentiation
print(x**2)
# Quantity['area'](Array([0., 1., 4., 9.], dtype=float64), unit='kpc2')

# Unit Checking on operations
try:
    x + y
except Exception as e:
    print(e)
# 'Gyr' (time) and 'kpc' (length) are not convertible

unxt is built on quax, which enables custom array-ish objects in JAX. For convenience we use the quaxed library, which is just a quax.quaxify wrapper around jax to avoid boilerplate code.

from quaxed import grad, vmap
import quaxed.numpy as jnp

print(jnp.square(x))
# Quantity['area'](Array([ 1.,  4.,  9., 16.], dtype=float64), unit='kpc2')

print(qnp.power(x, 3))
# Quantity['volume'](Array([ 1.,  8., 27., 64.], dtype=float64), unit='kpc3')

print(vmap(grad(lambda x: x**3))(x))
# Quantity['area'](Array([ 3., 12., 27., 48.], dtype=float64), unit='kpc2')

Since Quantity is parametric, it can do runtime dimension checking!

LengthQuantity = Quantity["length"]
print(LengthQuantity(2, "km"))
# Quantity['length'](Array(2, dtype=int64, weak_type=True), unit='km')

try:
    LengthQuantity(2, "s")
except ValueError as e:
    print(e)
# Physical type mismatch.

Citation

DOI

If you found this library to be useful and want to support the development and maintenance of lower-level code libraries for the scientific community, please consider citing this work.

Development

codecov Actions Status

We welcome contributions!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unxt-0.22.1.tar.gz (661.2 kB view details)

Uploaded Source

Built Distribution

unxt-0.22.1-py3-none-any.whl (57.3 kB view details)

Uploaded Python 3

File details

Details for the file unxt-0.22.1.tar.gz.

File metadata

  • Download URL: unxt-0.22.1.tar.gz
  • Upload date:
  • Size: 661.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unxt-0.22.1.tar.gz
Algorithm Hash digest
SHA256 09fdf3690c46dd150781882a6d3486d15ba884c6281f41f5c9c04d59e301ebfb
MD5 8384113f43214bb9a4bb10655b9f14a6
BLAKE2b-256 d83365484ee97c0dcfcf1d83e482e4c6860239e48e66316fed0385a87aafb0bc

See more details on using hashes here.

Provenance

The following attestation bundles were made for unxt-0.22.1.tar.gz:

Publisher: cd.yml on GalacticDynamics/unxt

Attestations:

File details

Details for the file unxt-0.22.1-py3-none-any.whl.

File metadata

  • Download URL: unxt-0.22.1-py3-none-any.whl
  • Upload date:
  • Size: 57.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unxt-0.22.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c266c6288195d534ef920ba26b62d282711c4346938330266fa53b3c2e6570ed
MD5 7a65cda7bc34450f2e3332307eb60b4b
BLAKE2b-256 4c56307906b90466b6de3550f8cb112d2e71aa9b31c16945905b0af11996ac9c

See more details on using hashes here.

Provenance

The following attestation bundles were made for unxt-0.22.1-py3-none-any.whl:

Publisher: cd.yml on GalacticDynamics/unxt

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page