Skip to main content

ROOT I/O in pure Python and NumPy.

Project description

PyPI version Conda-Forge Python 2.7,3.5‒3.9 BSD-3 Clause License Continuous integration tests

Scikit-HEP NSF-1836650 DOI 10.5281/zenodo.4340632 Documentation Gitter

Uproot is a library for reading and writing ROOT files in pure Python and NumPy.

Unlike the standard C++ ROOT implementation, Uproot is only an I/O library, primarily intended to stream data into machine learning libraries in Python. Unlike PyROOT and root_numpy, Uproot does not depend on C++ ROOT. Instead, it uses Numpy to cast blocks of data from the ROOT file as Numpy arrays.

Installation

Uproot can be installed from PyPI using pip. Awkward Array is optional but highly recommended:

pip install uproot awkward

Uproot is also available using conda (in this case, Awkward Array is automatically installed):

conda install -c conda-forge uproot

If you have already added conda-forge as a channel, the -c conda-forge is unnecessary. Adding the channel is recommended because it ensures that all of your packages use compatible versions (see conda-forge docs):

conda config --add channels conda-forge
conda update --all

Getting help

Start with the tutorials and reference documentation.

Installation for developers

Uproot is an ordinary Python library; you can get a copy of the code with

git clone https://github.com/scikit-hep/uproot4.git

and install it locally by calling pip install . in the repository directory.

If you need to develop Awkward Array as well, see its installation for developers.

Dependencies

Uproot's only strict dependency is NumPy. This is the only dependency that pip will automatically install.

Awkward Array is highly recommended. It is not a strict dependency to allow Uproot to be used in restrictive environments. If you're using Uproot without Awkward Array, you'll have to use the library="np" option or globally set uproot.default_library to return arrays as NumPy arrays (see documentation).

  • awkward: be sure to use Awkward Array 1.x.

The following libraries are also useful in conjunction with Uproot, but are not necessary. If you call a function that needs one, you'll be prompted to install it. (Conda installs most of these automatically.)

For ROOT files, compressed different ways:

  • lz4 and xxhash: only if reading ROOT files that have been LZ4-compressed.
  • zstandard: only if reading ROOT files that have been ZSTD-compressed.
  • backports.lzma: only if reading ROOT files that have been LZMA-compressed (in Python 2).

For remote data:

  • xrootd: only if reading files with root:// URLs.

For exporting data to other libraries:

  • pandas: only if library="pd".
  • cupy: only if library="cp" (reads arrays onto GPUs).
  • boost-histogram: only if converting histograms to boost-histogram with histogram.to_boost().
  • hist: only if converting histograms to hist with histogram.to_hist().

Acknowledgements

Support for this work was provided by NSF cooperative agreement OAC-1836650 (IRIS-HEP), grant OAC-1450377 (DIANA/HEP) and PHY-1520942 (US-CMS LHC Ops).

Thanks especially to the gracious help of Uproot contributors (including the original repository).


Jim Pivarski

💻 📖 🚇 🚧

Pratyush Das

💻 🚇

Chris Burr

💻 🚇

Dmitri Smirnov

💻

Matthew Feickert

🚇

Tamas Gal

💻

Luke Kreczko

💻 ⚠️

Nicholas Smith

💻

Noah Biederbeck

💻

Oksana Shadura

💻 🚇

Henry Schreiner

💻 🚇 ⚠️

Mason Proffitt

💻 ⚠️

Jonas Rembser

💻

benkrikler

💻

Hans Dembinski

📖

Marcel R.

💻

Ruggero Turra

💻

Jonas Rübenach

💻

bfis

💻

Raymond Ehlers

💻

Andrzej Novak

💻

Josh Bendavid

💻

Doug Davis

💻

Chao Gu

💻

Lukas Koch

💻

Michele Peresano

💻

Edoardo

💻

JMSchoeffmann

💻

alexander-held

💻

Giordon Stark

💻

Ryunosuke O'Neil

💻

ChristopheRappold

📖

Cosmin Deaconu

⚠️ 💻

Carlos Pegueros

📖 💡 ⚠️

💻: code, 📖: documentation, 🚇: infrastructure, 🚧: maintainance, ⚠: tests and feedback, 🤔: foundational ideas.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

uproot-4.1.2.tar.gz (245.4 kB view details)

Uploaded Source

Built Distribution

uproot-4.1.2-py2.py3-none-any.whl (290.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file uproot-4.1.2.tar.gz.

File metadata

  • Download URL: uproot-4.1.2.tar.gz
  • Upload date:
  • Size: 245.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for uproot-4.1.2.tar.gz
Algorithm Hash digest
SHA256 9cef64e322a75aa9cf91a20fd8cb10dbb068d5b756b6a5500c8169d54d422cc6
MD5 f9ae01fe643af7f3030a3d6c92026508
BLAKE2b-256 0cdbfa8a5ae1749c9089e9959288749e5f0164616782d15e07da7eabe3aa6ce9

See more details on using hashes here.

Provenance

File details

Details for the file uproot-4.1.2-py2.py3-none-any.whl.

File metadata

  • Download URL: uproot-4.1.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 290.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for uproot-4.1.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 2246e6f8dabe05661e7a199df4b8fae3e0e5f83b81643074bb0cb0214dfa9cb9
MD5 be31632ddfb20c62cf11fe8549659108
BLAKE2b-256 1eb1db09f0343f263c2d48c9fc39f18abd293a2806bcf0cac7be3e3b1f8fef55

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page