Skip to main content

Simple and efficient argument parser for every python projects

Project description

Upstride argument parser

License: MIT Build Status

This package provides a simple and efficient argument parser for every python projects. The idea is to define once all the arguments and then be able to parse them from the command line or configuration files


Let's start with a simple example to demonstrate how it works :

let's create a file containing :

import upstride_argparse as argparse

arguments = [
    [int, "batch_size", 128, 'The size of batch per gpu', lambda x: x > 0],
    [bool, "cpu", False, 'run on cpu'],
    [str, 'description', '', 'description of the experiment'],
    [float, "lr", 0.0001, 'learning rate', lambda x: x > 0],
    ['list[int]', "raw_size", [256, 256, 3], 'raw shape of one image'],
    ['list[str]', "yaml_config", [], "config files"]

config = argparse.parse_cmd(arguments)

so as you can see, the arguments are defined using a standard python list containing lists of [type, name, default, help, condition]

  • type can be a python type (int, bool, str, float) or a string list[python_type] for processing lists
  • condition is a function called when the parameters will be parsed. if one parameter doesn't respect the condition, an exception will be raised.

Now let's try to call this program

  • python prints {'batch_size': 128, 'cpu': False, 'description': '', 'lr': 0.0001, 'raw_size': [256, 256, 3], 'yaml_config': []}. This dictionary contains the default configuration
  • python --cpu --lr 0.1 --description hello --raw_size 28 28 1 prints {'batch_size': 128, 'cpu': True, 'description': 'hello', 'lr': 0.1, 'raw_size': [28, 28, 1], 'yaml_config': []}

now lets create a yaml file config.yml containing :

batch_size: 16
cpu: true
  • python --yaml_config config.yml prints {'batch_size': 16, 'cpu': True, 'description': '', 'lr': 0.0001, 'raw_size': [256, 256, 3], 'yaml_config': []}
  • python --yaml_config config.yml --cpu false prints {'batch_size': 16, 'cpu': False, 'description': '', 'lr': 0.0001, 'raw_size': [256, 256, 3], 'yaml_config': []}

as you can see, the command line has the priority over the configuration file

It is also possible to split the configuration between as many configuration file as you want


For larger project, it can become useful to define namespaces to organized the configuration. This can be done like this :

import upstride_argparse as argparse

arguments = [
    [int, "batch_size", 128, 'The size of batch per gpu', lambda x: x > 0],
    ['list[str]', "yaml_config", [], "config files"],
    ['namespace', 'first_namespace', [
        [str, 'arg1', 'hello', 'first argument'],
        ['namespace', 'second_namespace', [
            [bool, "i_am_not_doing_anything", True, ''],
            [bool, "nether_do_i", False, '']

config = argparse.parse_cmd(arguments)
  • calling python will print {'batch_size': 128, 'yaml_config': [], 'first_namespace': {'arg1': 'hello', 'second_namespace': {'i_am_not_doing_anything': True, 'nether_do_i': False}}}

variable from namespace can be configure from yaml config file this way :

batch_size: 16
  arg1: world
    i_am_not_doing_anything: false
    nether_do_i: true
  • calling python --yaml_config config.yml will print {'batch_size': 16, 'yaml_config': [], 'first_namespace': {'arg1': 'world', 'second_namespace': {'i_am_not_doing_anything': False, 'nether_do_i': True}}}

and these variables can be setup from the command line like this : python --yaml_config config.yml --first_namespace.arg1 bob --first_namespace.second_namespace.i_am_not_doing_anything false

it will print : {'batch_size': 16, 'yaml_config': [], 'first_namespace': {'arg1': 'bob', 'second_namespace': {'i_am_not_doing_anything': False, 'nether_do_i': True}}}

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

upstride_argparse-1.0.0.tar.gz (5.8 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page