Skip to main content

A convolution-based approach to detect urban extents.

Project description

PyPI version fury.io Build Status Coverage Status GitHub license

Urban footprinter

Overview

A convolution-based approach to detect urban extents from raster datasets.

:-------------------------:|:-------------------------:|:-------------------------: LULC | Convolution result | Urban extent

Installation / Usage

To install use pip:

$ pip install urban-footprinter

Or clone the repo:

$ git clone https://github.com/martibosch/urban-footprinter.git
$ python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

urban-footprinter-0.0.1.tar.gz (16.0 kB view details)

Uploaded Source

Built Distribution

urban_footprinter-0.0.1-py2.py3-none-any.whl (16.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file urban-footprinter-0.0.1.tar.gz.

File metadata

  • Download URL: urban-footprinter-0.0.1.tar.gz
  • Upload date:
  • Size: 16.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for urban-footprinter-0.0.1.tar.gz
Algorithm Hash digest
SHA256 2d8abccdef34a9a2f1b6291a72b09882269ac6b7655f9fd2554259f8896c7044
MD5 9daf8faa6ec995645fc2410f824ead72
BLAKE2b-256 6a854e15c83643123769b244b640dc6c27ea3cb413d6937a56f4841dd433f77f

See more details on using hashes here.

File details

Details for the file urban_footprinter-0.0.1-py2.py3-none-any.whl.

File metadata

  • Download URL: urban_footprinter-0.0.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 16.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for urban_footprinter-0.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 700d1a02a1ef5a16e51aecea0f18a4929f69a0fde63c9aa1e5bc7c1eb59eb299
MD5 07c538f7bee2143d543003fc74c317ae
BLAKE2b-256 d0f8434ef4220879b473018a16bccb445fa2d4516f215eeb2d55b8d03dda14d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page