Unsupervised Random Forest (Random Forest Clustering)
Project description
URF (Unsupervised Random Forest, or Random Forest Clustering) is a python implementation of the paper: Shi, T., & Horvath, S. (2006). Unsupervised learning with random forest predictors. Journal of Computational and Graphical Statistics, 15(1), 118-138.
Prerequisite
conda install -c bioconda pycluster
or:
wget http://bonsai.hgc.jp/~mdehoon/software/cluster/Pycluster-1.54.tar.gz tar -zxvf Pycluster-1.54.tar.gz cd Pycluster-1.54 python setup.py install
Installation
pip install URF
Usage
from sklearn.datasets import load_iris from URF.main import random_forest_cluster, plot_cluster_result iris = load_iris() X = iris.data y = iris.target print(len(list(set(y)))) clf, prox_mat, cluster_ids = random_forest_cluster(X, k=3, max_depth=20, random_state=0) plot_cluster_result(prox_mat, cluster_ids, marker=y)
If you encountered an error like
> QXcbConnection: Could not connect to display
then you need to add these codes to the very beginning of your file:
import matplotlib as mpl
mpl.use("Agg")
and you must assign the output file when you call plot_cluster_result, like this:
plot_cluster_result(prox_mat, cluster_ids, marker=y, output="test_123.png")
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
URF-0.0.5.tar.gz
(3.7 kB
view details)
File details
Details for the file URF-0.0.5.tar.gz.
File metadata
- Download URL: URF-0.0.5.tar.gz
- Upload date:
- Size: 3.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
2c3cbb794dd284b0387ea28e38c3ed4137ade6488667d7adb2914a551afaf9f1
|
|
| MD5 |
957f55b26b68b222a2a7b826cab43159
|
|
| BLAKE2b-256 |
bac6afc7d111e338acccf917daca888da4d5b36e3af32017ee26e39c7c9b89ae
|