Skip to main content

Create Google Maps US polygon maps from csv's, python dictionaries and pandas dataframes

Project description

us_polygon_mapper allows users to create polygon maps of the United States from csv’s, python dictionaries and pandas DataFrames. The script utilizes Google Maps API (gmplot wrapper). You can create html files and png’s (when a png is created, an html is also created). PhantomJS must be installed to create png’s (see below).

example.png

Basics

To install:

pip install us_polygon_mapper

To use:

#!/usr/bin/env python

import us_polygon_mapper.us_polygon_mapper as uspm

You can use any of the following as data inputs:

  1. A csv with a column containing states (full or abbreviated) and another column containing values

  2. A dictionary of the form {state1: value1, state2: value2}

  3. A pandas DataFrame with a column containing states (full or abbreviated) and another column containing values

The map works by splitting your data into two groups. The “low” group will contain all data points <= the “middle” (by default, the mean). The “high” group will contain all the data points > the “middle”.

A color is specified for the “low” group and the “high” group (by default: green and red respectively).

Colors: ‘red’, ‘orange’, ‘yellow’, ‘green’, ‘blue’, ‘purple’, ‘brown’

Middle: ‘mean’, ‘median’, float, ‘percentile=x’ (x: 0-100)

By default, for csv’s and pandas DataFrames, the states column is assumed to be column 0, and the values column is assumed to be column 1.

You can change this by passing the argument columns=[state_column_num, value_column_num] (e.g. [2, 3]) or columns=[state_column_name, value_column_name] (e.g. [‘state’, ‘debt’]).

Use case:

For example, you could use this package to create a map of election results. You could make your values GOP% - DEM% for each state. You would then set your “middle” to be 0, “low color” to be blue and “high color” to be red. See example.py.

Main Functions

The main functions are:

  • uspm.dict_to_html(values_dict, low_color=“green”, high_color=“red”, middle=“mean”, html_fn=“mymap.html”)

  • uspm.csv_to_html(csv_path, low_color=“green”, high_color=“red”, middle=“mean”, columns=None, html_fn=“mymap.html”)

  • uspm.df_to_html(df, low_color=“green”, high_color=“red”, middle=“mean”, columns=None, html_fn=“mymap.html”)

  • uspm.dict_to_png(values_dict, low_color=“green”, high_color=“red”, middle=“mean”, png_fn=“mymap.png”, html_fn=“mymap.html”)

  • uspm.csv_to_png(csv_path, low_color=“green”, high_color=“red”, middle=“mean”, columns=None, png_fn=“mymap.png”, html_fn=“mymap.html”)

  • uspm.df_to_png(df, low_color=“green”, high_color=“red”, middle=“mean”, columns=None, png_fn=“mymap.png”, html_fn=“mymap.html”)

colors: ‘red’, ‘orange’, ‘yellow’, ‘green’, ‘blue’, ‘purple’, ‘brown’

middle: ‘mean’, ‘median’, float, ‘percentile=x’ (x: 0-100)

columns: None (defaults to [0, 1]), [state_column_num, value_column_num] (e.g. [2, 3]), or [state_column_name, value_column_name] (e.g. [‘state’, ‘debt’])

Remark on png’s

To create png’s, you must have PhantomJS installed <http://phantomjs.org/download.html>.

Mac:

(With Homebrew) Enter “brew install phantomjs” in Terminal

Windows:

Download PhantomJS <http://phantomjs.org/download.html> and place phantomjs.exe in your Path (full steps below for Windows 10).

  1. Download PhantomJS <http://phantomjs.org/download.html>

  2. Go to Control Panel > System and Security > System

  3. Click “Advanced system settings” in the left panel

  4. Click Environment Variables…

  5. Either move phantomjs.exe to a folder in your Path, or add the folder phantomjs.exe is in to your Path.

Notes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

us_polygon_mapper-1.0.1.tar.gz (36.3 kB view details)

Uploaded Source

File details

Details for the file us_polygon_mapper-1.0.1.tar.gz.

File metadata

File hashes

Hashes for us_polygon_mapper-1.0.1.tar.gz
Algorithm Hash digest
SHA256 c87e6973abee85fe49c43f041bbdda06f04aeb62090b43733bf7fec19b614511
MD5 1b34f62f07f085a46254590bd3ae60cf
BLAKE2b-256 768e169860dc1610843044bc1adb2519496692e40e50503d9791f4ea97dd31cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page