Bagging Classifier with Under Sampling
Project description
# USBaggingClassifier # Overview Bagging Classifier with Under Sampling. This approach is good for classification imbalanced data. You can use both of Binary or Multi-Class Classification. Methods could use looks like sci-kit learn’s APIs. Only use in python 3.x # Usage ## Parameters * base_estimator : object Classifier looks like sklearn.XXClassifier. Classifier must have methods [fit(X, y), predict(X)]. It is not nesessary predict_proba(X), but if it has this method, you could select ‘soft voting’ option and get predict probability. * n_estimators : int (default=10) The number of base estimators. * voting : str {‘hard’,’soft’} (default=’hard’) hard : use majority rule voting soft : argmax of the sums of prediction probabilities * n_jobs : int (default=1) number of jobs to run in parallel for fit. If -1, equals to number of cores. ## methods * fit(X, y) X : pandas.DataFrame y : pandas.Series return : None * predict(X) X : pandas.DataFrame return : predicted y : numpy.array * predict_proba(X) X : pandas.DataFrame return : predicted probabilities (mean of all bagged models)
# LICENSE This software is released under the MIT License, see [LICENSE](/LICENSE)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file usbclassifier-0.1.3.tar.gz
.
File metadata
- Download URL: usbclassifier-0.1.3.tar.gz
- Upload date:
- Size: 3.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c26abd3c7b8c32267bc44462831588715234dc28dfe7088e2836248dd035be50 |
|
MD5 | 4f344bf1cb04b77c5e68cd0d5c7eb8e9 |
|
BLAKE2b-256 | c91023050c2ec39b2df132ab1d28af485d05a96a2c9f0112ffc06ac6b458d2a4 |
File details
Details for the file usbclassifier-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: usbclassifier-0.1.3-py3-none-any.whl
- Upload date:
- Size: 3.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5590b57b601dfefe0cb58003ccb66a019e228370ed3a757653ce89c7e4ad2f0c |
|
MD5 | f240000dcd2cad7ae07030c928572346 |
|
BLAKE2b-256 | 1b460fa0b3727258f55654ba01ef826c4e769f8c327bbd28a00ec09aebc4d2a0 |