Skip to main content

Bagging Classifier with Under Sampling

Project description

# USBaggingClassifier # Overview Bagging Classifier with Under Sampling. This approach is good for classification imbalanced data. You can use both of Binary or Multi-Class Classification. Methods could use looks like sci-kit learn’s APIs. Only use in python 3.x # Usage ## Parameters * base_estimator : object Classifier looks like sklearn.XXClassifier. Classifier must have methods [fit(X, y), predict(X)]. It is not nesessary predict_proba(X), but if it has this method, you could select ‘soft voting’ option and get predict probability. * n_estimators : int (default=10) The number of base estimators. * voting : str {‘hard’,’soft’} (default=’hard’) hard : use majority rule voting soft : argmax of the sums of prediction probabilities * n_jobs : int (default=1) number of jobs to run in parallel for fit. If -1, equals to number of cores. ## methods * fit(X, y) X : pandas.DataFrame y : pandas.Series return : None * predict(X) X : pandas.DataFrame return : predicted y : numpy.array * predict_proba(X) X : pandas.DataFrame return : predicted probabilities (mean of all bagged models)

# LICENSE This software is released under the MIT License, see [LICENSE](/LICENSE)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

usbclassifier-0.1.3.tar.gz (3.6 kB view details)

Uploaded Source

Built Distribution

usbclassifier-0.1.3-py3-none-any.whl (3.1 kB view details)

Uploaded Python 3

File details

Details for the file usbclassifier-0.1.3.tar.gz.

File metadata

File hashes

Hashes for usbclassifier-0.1.3.tar.gz
Algorithm Hash digest
SHA256 c26abd3c7b8c32267bc44462831588715234dc28dfe7088e2836248dd035be50
MD5 4f344bf1cb04b77c5e68cd0d5c7eb8e9
BLAKE2b-256 c91023050c2ec39b2df132ab1d28af485d05a96a2c9f0112ffc06ac6b458d2a4

See more details on using hashes here.

File details

Details for the file usbclassifier-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for usbclassifier-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 5590b57b601dfefe0cb58003ccb66a019e228370ed3a757653ce89c7e4ad2f0c
MD5 f240000dcd2cad7ae07030c928572346
BLAKE2b-256 1b460fa0b3727258f55654ba01ef826c4e769f8c327bbd28a00ec09aebc4d2a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page