Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Vector Search Engine


Discord     LinkedIn     Twitter     Blog     GitHub

Euclidean • Angular • Jaccard • Hamming • Haversine • User-Defined Metrics
C++11PythonJavaScriptJavaRustC99Objective-CSwiftGoLangWolfram
Linux • MacOS • Windows • Docker • WebAssembly


Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, with a primary focus on user-defined metrics and fewer dependencies.

FAISS USearch
Implementation 84 K SLOC in faiss/ 3 K SLOC in usearch/
Supported metrics 9 fixed metrics Any User-Defined metrics
Supported ID types uint32_t, uint64_t uint32_t, uint40_t, uint64_t
Dependencies BLAS, OpenMP None
Bindings SWIG Native
Acceleration Learned Quantization Downcasting

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

$ pip install usearch numpy

import numpy as np
from usearch.index import Index

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: How frequent should the connections in the graph be
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of search
)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)
matches: Matches = index.search(vector, 10)

assert len(index) == 1
assert len(matches) == 1
assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector)

User-Defined Functions

While most vector search packages concentrate on just a couple of metrics - "Inner Product distance" and "Euclidean distance," USearch extends this list to include any user-defined metrics. This flexibility allows you to customize your search for a myriad of applications, from computing geo-spatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models.

USearch: Vector Search Approaches

Unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip as a distance function.

Read more about JIT and UDF in USearch Python SDK.

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts.

USearch uint40_t support

Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f32_t, f16_t, f64_t, and i8_t representations, even if the hardware doesn't natively support it. Continuing the topic of memory efficiency, we provide a uint40_t to allow collection with over 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph.

FAISS, f32 USearch, f32 USearch, f16 USearch, i8
Batch Insert 16 K/s 73 K/s 100 K/s 104 K/s +550%
Batch Search 82 K/s 103 K/s 113 K/s 134 K/s +63%
Bulk Insert 76 K/s 105 K/s 115 K/s 202 K/s +165%
Bulk Search 118 K/s 174 K/s 173 K/s 304 K/s +157%
Recall @ 10 99% 99.2% 99.1% 99.2%

Dataset: 1M vectors sample of the Deep1B dataset. Hardware: c7g.metal AWS instance with 64 cores and DDR5 memory. HNSW was configured with identical hyper-parameters: connectivity M=16, expansion @ construction efConstruction=128, and expansion @ search ef=64. Batch size is 256. Both libraries were compiled for the target architecture. Jump to the Performance Tuning section to read about the effects of those hyper-parameters.

Disk-based Indexes

With USearch, you can serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=CompiledMetric(...))
other_view.view("index.usearch")

Joins

One of the big questions these days is how will AI change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join is different from searching for every entry, as it requires a one-to-one mapping, banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can come in handy in any fuzzy-matching tasks, common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in post: From Dating to Vector Search - "Stable Marriages" on a Planetary Scale 👩‍❤️‍👨

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search
Save, load, view
Join
User-defined metrics
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash 25K Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions 3M Images & Descriptions 3 M HuggingFace / Unum
Arxiv 2M Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry, is to generate structures from SMILES, and later hash them into binary fingerprints. The latter are searchable with bitwise similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

Integrations

  • GPT-Cache.
  • LangChain.
  • Microsoft Semantic Kernel.
  • ClickHouse.

Citations

@software{Vardanian_USearch_2022,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {0.13.0},
year = {2022}
month = jun,
}

Project details


Release history Release notifications | RSS feed

This version

1.0.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-1.0.0-cp311-cp311-win_amd64.whl (213.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-1.0.0-cp311-cp311-manylinux_2_28_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-1.0.0-cp311-cp311-manylinux_2_28_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

usearch-1.0.0-cp311-cp311-macosx_11_0_arm64.whl (331.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-1.0.0-cp311-cp311-macosx_10_9_x86_64.whl (340.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-1.0.0-cp311-cp311-macosx_10_9_universal2.whl (643.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-1.0.0-cp310-cp310-win_amd64.whl (212.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-1.0.0-cp310-cp310-manylinux_2_28_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-1.0.0-cp310-cp310-manylinux_2_28_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

usearch-1.0.0-cp310-cp310-macosx_11_0_arm64.whl (330.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-1.0.0-cp310-cp310-macosx_10_9_x86_64.whl (339.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-1.0.0-cp310-cp310-macosx_10_9_universal2.whl (641.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-1.0.0-cp39-cp39-win_amd64.whl (212.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-1.0.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-1.0.0-cp39-cp39-manylinux_2_28_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

usearch-1.0.0-cp39-cp39-macosx_11_0_arm64.whl (330.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl (339.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-1.0.0-cp39-cp39-macosx_10_9_universal2.whl (641.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-1.0.0-cp38-cp38-win_amd64.whl (211.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-1.0.0-cp38-cp38-manylinux_2_28_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-1.0.0-cp38-cp38-manylinux_2_28_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

usearch-1.0.0-cp38-cp38-macosx_11_0_arm64.whl (330.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl (339.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-1.0.0-cp38-cp38-macosx_10_9_universal2.whl (641.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-1.0.0-cp37-cp37m-win_amd64.whl (212.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-1.0.0-cp37-cp37m-manylinux_2_28_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-1.0.0-cp37-cp37m-manylinux_2_28_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

usearch-1.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (336.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-1.0.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-1.0.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 213.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for usearch-1.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f234675bc1e5afba10ff187b0aa38d86b82f246c83c6b7f2ad4bee04b9e50310
MD5 d9e43a46f7be7b3d21645ccb99b70968
BLAKE2b-256 da447e1eba4d024a9c12b098d069e05f6a4ef63b486a89ac7404b5bac467130b

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 49c4393b693fbd61437ecc80e4d51e270fee917e28dee7b5172df8d15f0b4879
MD5 f660d60b034542334fcbf11de0986edd
BLAKE2b-256 cded2f133d3aec9aad9801e53138e8bf7c8eb414aa1749c63bc5ba6081c8f196

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0ee280089b7e7712f727a782f910a96523433e9ef3271b852cc00da0650ebcbd
MD5 924e92a3b438d6dd09a207b6d29082c0
BLAKE2b-256 60cc95b39b858d7dd593e088744e4e35bb2ed564dc3e3267f05dbff37f42c244

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0b6fb1b9f3226963ab443f55b539f0ca24076170e9234104fda390898ba5f731
MD5 10707a073b9d620e991b83f01812589b
BLAKE2b-256 ed8ea3541d4e974d955b56be5cc9c6563d9bf5dc77f290e0a121fc87877b07d4

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14de8f84812bc7dab4966072008092ca4c4ab3b5758ff21108698a19c7ead7be
MD5 41a44c042e50358a2f176d56b177e49b
BLAKE2b-256 8f51797832d80f8577dd02e03dfcdbff001f531385dc5c5b1e7cd10671cc411f

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 360b989336a4d8f390fd4349dc337f41772592196308e45b2bc46fe3ad59dfa9
MD5 add18105f91ff484ce5cf9536af3b0df
BLAKE2b-256 00fc0cb9da6ed2e5d4fa3c3059ee19099de9810963b9b00cd5fd6bac993d187e

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-1.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 212.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for usearch-1.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 eb971f4837f083fbef9448a0c9c7e2599c060aee3d50ca0466edf015985cddd4
MD5 efd293f9b5678f80e1a1e9c38601c7bb
BLAKE2b-256 0920493b660ee380c32317c6976bf721ff6d935971af35661b4d5a321abb507f

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4532f63dac6f2b6cc2e8f129124fd53d6fc94a6b3021222b9fd3331c7a5e2040
MD5 61779196c9ca6cd799612860557d63fa
BLAKE2b-256 a7ca0bde6c7e03e1041ed7269559bb44ee72958d1e37be44348db723a9e7e24d

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bb3c262923a6e163071414471c8e3f412b46eb0e3b821eef2d4f1c182f0e9c48
MD5 88b26849e86c49f4404ce4b86e6d6a9c
BLAKE2b-256 0d1ce34bc23ccfacac5c297757f18a91c9a2f160d0dffd4a9ba3bad1cb7f51a1

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 27a6484b18ef5a45226666deaa4d7e91a945cee3db8f4bac43386e824e44a4ad
MD5 8f32c11c7e5b7ee47690996de9ba482a
BLAKE2b-256 c0d0237a18f166fc7b8e3c8a9e58a06048ddd7a08841b08276abd638a2b690f6

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b9dba7d158f33028dd663130a30286d1cb47e3153af5b920e47ed59b6057ff16
MD5 f085e8170ce4e80a047757d5ebcf4d7c
BLAKE2b-256 02e8aa2506acb3dd16110b5b58b1cf6ed38eb7bc7bd498412d984a31a9350863

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f7b43ad15d0f5ef1d2dba25f30cc598f22bd0cf780c16b57c864b11eb6739565
MD5 d55d4872641674e7ad5908a8e0e5bf76
BLAKE2b-256 46a76e2f2d978118dc3f4b58399950ed9ea1ffbd981b46eac590eaedce47d287

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-1.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 212.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for usearch-1.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 abfcf366ca30d104ac5a856b254d96c4bfa0d29662f049245cb875d3715b407b
MD5 665f051610a75af1e76d9e2244053891
BLAKE2b-256 d167391210bf8bc918c7676b859cbe9d56ab8c4d57df244900081ffdebcc9fc6

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0622a3f7d87e99b4fb9dcd435a995cd8d9f0198376cf9134a9834434ae1de367
MD5 07eb4315814caf104d6a28a68bfd8ec6
BLAKE2b-256 1474335c5dd78307cdc6865c1ff43d8c9284faa00771f9a47dbe8e9a76fc800f

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 25831ff14d756688e0471a43581e88c93842f8c9a8ee1c49f3a07725cad58cb1
MD5 0f280b546ac369f7b6a2c0c1bcf0bde0
BLAKE2b-256 aadfd51b3c2ec9a7e641b37b451961049ee8fb078f0235ea1fe74338eca17d58

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 edb721521f76c03a1e4a9eee32832709e57ef5acb0ace2c29cca67b285668a17
MD5 85ce918c4efc713347e0a518b07ec6b6
BLAKE2b-256 c350cf390d5a0953766c3c365497eeafc9f49563f051a104f81e8caba53a60b9

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 014801f067dcfdc646c66b05c5c1d076e31d53399ec4b3e7edfab1b057b08266
MD5 33855f7dd3f97543f33928d12d613761
BLAKE2b-256 c26346957ad0bc935a84a549cdc19b8e990c1c72667587a09cdc2cfa1779416a

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6a92181eeed388c4a2a8dc1eb23915f615eedd4d9a5490bb3ce03e339873a151
MD5 38eba3460b04439fb6223756c9608b7e
BLAKE2b-256 4595a336c71aa96b7bf09fa1de6ca87331aa3eb5a5e4c726c2a085ef4c31587f

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-1.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 211.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for usearch-1.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3b766a9b39022349e81657beafdfe852c0a657184ee5b930c33de7ebda26f024
MD5 9fe696968423128724993349ec56015a
BLAKE2b-256 d59952afa5e0fe9513fc2da77850eb07c0c6fb5382a796d126edecb7a6e5252c

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3ff1beb78dfddea1bfc7130318e6bc81932ae4126a9bd9b3133baf1ecde9843b
MD5 27977e207f855af52011e2f4490b2121
BLAKE2b-256 32c474ee6dc4fd2165fc5027f3db098ff35f4aa6c4e5670b8079edbea8d6b69c

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9e512dc3479cff29677108c8b408d06f10398d3bf1442d71d9540202c012132e
MD5 6985204ed59d0ce653a5973c8d3ccfe7
BLAKE2b-256 0c7b9fd7acdc05132f64747f928e76dac3191d606ee040abe99a281e15be9230

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 996b5c03f04cec478ff25dbc1c31df51fd76d7df7baca59dfe93644cb153906b
MD5 a91e9888ea67eb9f7fe1cfcd2104ec39
BLAKE2b-256 88688f7fc44f68883b6ea1fbdb2ea0f36e08ca180470aee7d5ee91c7f004d1f7

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d4742e1be5eebb5e51efc6f81b69a4301c1994c151a34ebd8993f537099f0ec8
MD5 92abf7f3c38edcd1223cdc3944c7b3aa
BLAKE2b-256 3b203d3d2154a1308f19188a3dbc1bfb4ab099ffeec1393b626e38aa7cd8969e

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bf491a6e580ee01fb6f0e987d540b200e80490786bb99e94b35fffa9233f4fd0
MD5 3e7d48ccde89a49e5b8545a9d2d72693
BLAKE2b-256 ad165d5b7e90fd6ad6a97e39ad57b281783eae80edb5e100c8bc0572c3100347

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-1.0.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 212.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for usearch-1.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c6cc851865f7c2b400aa028cb4a3798e9066ad275d2f3e1c2165d1e481ec10ef
MD5 e97be77bc9364c4811862ef245d60fbe
BLAKE2b-256 1ad837b8e4348e6e465540074cf4c8813f502b62746b3bdce682a114487e1872

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 010d226a1a73467b04f877fd80ff541de980c68a18e8d1b4857a137db5b65e93
MD5 2aa02ce94e674d79e660beba87f9d7a7
BLAKE2b-256 cfb4a3af87cadcaca04fb6154f445c1d3442fa5d384f31057ea9be8c98aa5a41

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1ed598faa402c7f7552678593ee303d6f540bf1fe2306cc1d84b6ce9a7409997
MD5 788b766fe8dd1b3ed364c01a67128eb8
BLAKE2b-256 88bf097edeba6c567068359958c6172776a6f31bc324fbbeeef0e03520749f0e

See more details on using hashes here.

File details

Details for the file usearch-1.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 60de726560edf8cdc361aa5966c27b87ee14b7f22ac94868ff5a154183ca8531
MD5 8fe474e1f351399985006e9040e0670c
BLAKE2b-256 c3a5cf0844854e6aaeb1d72aad07c406aa4976067b349bddff3985f843e90bfa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page