Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Vector Search Engine


Discord     LinkedIn     Twitter     Blog     GitHub

Euclidean • Angular • Jaccard • Hamming • Haversine • User-Defined Metrics
C++11PythonJavaScriptJavaRustC99Objective-CSwiftGoLangWolfram
Linux • MacOS • Windows • Docker • WebAssembly


Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, with a primary focus on user-defined metrics and fewer dependencies.

FAISS USearch
Implementation 84 K SLOC in faiss/ 3 K SLOC in usearch/
Supported metrics 9 fixed metrics Any User-Defined metrics
Supported ID types uint32_t, uint64_t uint32_t, uint40_t, uint64_t
Dependencies BLAS, OpenMP None
Bindings SWIG Native
Acceleration Learned Quantization Downcasting

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

$ pip install usearch numpy

import numpy as np
from usearch.index import Index

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: How frequent should the connections in the graph be
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of search
)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)
matches: Matches = index.search(vector, 10)

assert len(index) == 1
assert len(matches) == 1
assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector)

User-Defined Functions

While most vector search packages concentrate on just a couple of metrics - "Inner Product distance" and "Euclidean distance," USearch extends this list to include any user-defined metrics. This flexibility allows you to customize your search for a myriad of applications, from computing geo-spatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models.

USearch: Vector Search Approaches

Unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip as a distance function.

Read more about JIT and UDF in USearch Python SDK.

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts.

USearch uint40_t support

Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f32_t, f16_t, f64_t, and i8_t representations, even if the hardware doesn't natively support it. Continuing the topic of memory efficiency, we provide a uint40_t to allow collection with over 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph.

FAISS, f32 USearch, f32 USearch, f16 USearch, i8
Batch Insert 16 K/s 73 K/s 100 K/s 104 K/s +550%
Batch Search 82 K/s 103 K/s 113 K/s 134 K/s +63%
Bulk Insert 76 K/s 105 K/s 115 K/s 202 K/s +165%
Bulk Search 118 K/s 174 K/s 173 K/s 304 K/s +157%
Recall @ 10 99% 99.2% 99.1% 99.2%

Dataset: 1M vectors sample of the Deep1B dataset. Hardware: c7g.metal AWS instance with 64 cores and DDR5 memory. HNSW was configured with identical hyper-parameters: connectivity M=16, expansion @ construction efConstruction=128, and expansion @ search ef=64. Batch size is 256. Both libraries were compiled for the target architecture. Jump to the Performance Tuning section to read about the effects of those hyper-parameters.

Disk-based Indexes

With USearch, you can serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=CompiledMetric(...))
other_view.view("index.usearch")

Joins

One of the big questions these days is how will AI change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join is different from searching for every entry, as it requires a one-to-one mapping, banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can come in handy in any fuzzy-matching tasks, common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in post: From Dating to Vector Search - "Stable Marriages" on a Planetary Scale 👩‍❤️‍👨

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search
Save, load, view
Join
User-defined metrics
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash 25K Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions 3M Images & Descriptions 3 M HuggingFace / Unum
Arxiv 2M Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry, is to generate structures from SMILES, and later hash them into binary fingerprints. The latter are searchable with bitwise similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

Integrations

  • GPT-Cache.
  • LangChain.
  • Microsoft Semantic Kernel.
  • ClickHouse.

Citations

@software{Vardanian_USearch_2022,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {0.13.0},
year = {2022}
month = jun,
}

Project details


Release history Release notifications | RSS feed

This version

1.1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-1.1.0-cp311-cp311-win_amd64.whl (212.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-1.1.0-cp311-cp311-manylinux_2_28_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-1.1.0-cp311-cp311-manylinux_2_28_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

usearch-1.1.0-cp311-cp311-macosx_11_0_arm64.whl (331.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl (340.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-1.1.0-cp311-cp311-macosx_10_9_universal2.whl (643.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-1.1.0-cp310-cp310-win_amd64.whl (212.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-1.1.0-cp310-cp310-manylinux_2_28_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-1.1.0-cp310-cp310-manylinux_2_28_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

usearch-1.1.0-cp310-cp310-macosx_11_0_arm64.whl (330.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl (339.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-1.1.0-cp310-cp310-macosx_10_9_universal2.whl (641.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-1.1.0-cp39-cp39-win_amd64.whl (212.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-1.1.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-1.1.0-cp39-cp39-manylinux_2_28_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

usearch-1.1.0-cp39-cp39-macosx_11_0_arm64.whl (330.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl (339.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-1.1.0-cp39-cp39-macosx_10_9_universal2.whl (641.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-1.1.0-cp38-cp38-win_amd64.whl (211.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-1.1.0-cp38-cp38-manylinux_2_28_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-1.1.0-cp38-cp38-manylinux_2_28_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

usearch-1.1.0-cp38-cp38-macosx_11_0_arm64.whl (330.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl (339.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-1.1.0-cp38-cp38-macosx_10_9_universal2.whl (641.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-1.1.0-cp37-cp37m-win_amd64.whl (212.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-1.1.0-cp37-cp37m-manylinux_2_28_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-1.1.0-cp37-cp37m-manylinux_2_28_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

usearch-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (336.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-1.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-1.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 212.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for usearch-1.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 33e7c08c4865313cdbf5380f6578228d638bdd9d67b98ffc9886473a7677c5ce
MD5 12e8af0c8398144a833853a115adc6fb
BLAKE2b-256 bf824f33b9cba998638a9e9e0c1de6c7547fc161aa457090737f5638a960caea

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2db46bfe2d0525be1f16a50009a7bfd277e36070a83d4428b12f82b9c91cc0b8
MD5 7e752c95b9673bdb2ac07cbe2904f0aa
BLAKE2b-256 7b36639f4f1ec6a8f13c8d030a23c5d12d40fa23ede288786453f20dc9e7aab1

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b7f50a9638e72c063e28d885feb8cb562ad30a48915290c81ba70018a4e18fda
MD5 8235b511f1c338120ddb6c0d9cfd33d3
BLAKE2b-256 794130ec4a108293d755a9fc14e0214209b248772de8515bdf7a101636517a95

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cbb503c549fcd1c494c664a0ea174d2d2a682436199649e4601d8ca5c5676dbf
MD5 65d39807da8e3150cd990f6591c351d6
BLAKE2b-256 c28d928877650838186fffbf3a2ce5cadd8c648d923c487531ae28410e71024b

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 81dbd1fba8a5258c58b39133a8916c6e96c95ca448549ad5cce12ff50bdb9cb1
MD5 93ad5c74d89b641a471811788cc3dffc
BLAKE2b-256 e13fcac119b8d2833345bb4f8e06ea41a2fe590d895b420b537f3ec82fe60b43

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 09cfd5b38af41ccb0bc5734a22e3235a8d6c5e740337ee97d2e3297e73c9135e
MD5 2c659bf46c427c8303ea69281e06268a
BLAKE2b-256 271c642ebc450c562747caca83aaf5c03e3f29edbdf64910501fc191013894b7

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-1.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 212.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for usearch-1.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9b4d968869e423d1dd96589e932b38fabf895a8d6f7377e3bf9f47033974fbb1
MD5 8ccf4ba0f70826eb48731b734844ad7c
BLAKE2b-256 53ffefad3e9ca961cbdb498ac03a81d21f67f1bc3ff6625d347ac23e3d925a6b

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 65db6691942d8cf83d7c41fa7bae40c7e39196be5dce32c46edcf2fe68af1d79
MD5 ebea8bd62c5a27e20f0cc14babe6943f
BLAKE2b-256 624a18311ef523ad6e6ac6592744478720e6075b35ab401fe5ec9d79ac2995d2

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 dd407a007432ab7330b1730f3647e869e5ccef9f12fb74dc338aba7c403cadd3
MD5 a03d2730bed5396647951243fd5c8f9d
BLAKE2b-256 5c993c66bff5b6bb6710a0866ddb75bef05adfc2b78a4b127b784559d72cc82b

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 49c2467e4a7b45be9a5f523e30574aeb166f92433bb5669788779a69400d2fc5
MD5 47e72e6f496e7377f3cb3a8c9045c03e
BLAKE2b-256 26eec039f320727d5128af73f2dca6d861964616720311b878acb0657dc2b169

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d66fbeb55cad12b0449a300dd00194b5b194f4e1e147997ffe3b71a167d4ae4e
MD5 3433167fa0db4802755cc9ed8356db59
BLAKE2b-256 09ef0136b9b26c1ef886e9227dc8afa30d3aa115314cb4774b9790696125cc86

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3c13d8c75ffdec4b3b9ab7df670cab7c2da07fe4413bb70b2d80b23655c0f570
MD5 2a95cefb7929013be12a91168d6885d9
BLAKE2b-256 bfa24f108f9cb44cfa792e8b7e6c14f1b6c6316ad8edf876b03023e1f231e442

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-1.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 212.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for usearch-1.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ea64598e35211b33a02bace94c6edaddeeebd3ebbfc5b6a1cc7404dd9cf1660d
MD5 2ac5f6c6468c4737ac4af74e9663717d
BLAKE2b-256 a78c037c1b64d49fec2e13b4f459f0685cf8e22de8a7fab756ae74ce55a624ce

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 44acd4dd2add99aa9bc582833d37e954a0ee74fbda0d414a63c405a6b5566c14
MD5 00a51351b2c95f20f6fdc00bde0d3110
BLAKE2b-256 a5f592dd91c1a1dc95bce0386700bb132049a540905b637885a72744ec81d017

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9f6a14377b7075d22ebead23fba0d977cbb42d720d8514db46a6636b148aad6e
MD5 4b085d8d1166ec5297a420b2d8fae2b1
BLAKE2b-256 e23f20c85bf744f5469f99ff6b423a1e9364a53202e9d3c7e7762b5ee7679c55

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1933928616a39f4efdb0b36f50187e37fe947da995af45d50ff36ae3f286208c
MD5 3de410800934a5612a6715147c589438
BLAKE2b-256 f3e4214fffb7000d119f60a9cdf098df71bbe8cc274127ccab814484a6726bf7

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6fa97704f554d9fc95ed8f08467cdc0252a8550a639b49306318ae1a833a0652
MD5 f6c05d3658370f0fde9649bdbba874b5
BLAKE2b-256 b7397f5a4cb5d36d13c56f11f3d35afc5d6f3252eb93e0397496bcf6047c3de3

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fb1c5525dec74f03df857b7446e6d517d263ed8e2550f356a934e55abc56b42d
MD5 a32d0d83a10a88005394d228b88d6380
BLAKE2b-256 8aa160895e6a6150b08051a3b3cadd59f28fd8a7b68d3c388dddd4a1351bb7eb

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-1.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 211.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for usearch-1.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f71bc617dfca938f8b3d1a1f38138513f047fef40c70f91dfb83289b821ca3a9
MD5 79cd4729352ff2141f2aa52a021fa409
BLAKE2b-256 016898b7b159c8214a48da4fff8f23f61430226e4fa9130355af60690d133b3a

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 aa0785e00f755bbdaca6b244eb49fdbea510a1e651d215aadd3a241ab5f77899
MD5 fc417e2e46aa382bc7a2888854ecc1ed
BLAKE2b-256 926ab51374b399a029fad0e3617e66915a92d8025a82b020e09267fb95952d00

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 51e9f19a0b5d03a880cb07698956f862bcb4980fa225dd110612649af9a6c4a4
MD5 3208ab9cfb2fb90fc6055ed58820f17a
BLAKE2b-256 c5068e12feb07a4e1683967d69658107959d1847923db9b51fbc9e1241dab02a

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8bb44ab28ca0649c1ea7950aae0eae638fa1650bb31a273b2afcddb88d4f76ce
MD5 88316093cf39e594cf1f94e741381aec
BLAKE2b-256 c3db2e19a5fb243cf59738bae5a2957c75a7b737fe2266229daef26458e41e6d

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d14a6c7b6e59a0f32f42c2cce3d084a9c1a04141040205e16a04c6159b889f0
MD5 ccaae472dd461c9256e92da61ef07fad
BLAKE2b-256 d2a0e7c8199029687c8bc8cc9c6b1a5656a822d10867e5be4d0ebdd4486328a2

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a7e6e0d90118a92647a0acfef95b21040425c35246d5051a62e2f1664bfe41bf
MD5 b881ff1f8c94a439a35b45f62f9f0b9d
BLAKE2b-256 b5a2a583a8e90930e71bc3d72ad149de1f81cc9e3c6790a08ae58152c1c34a05

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-1.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 212.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for usearch-1.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7b5edbdd7628946d8edde2d4b16bd2025903b04aa340c1b4577e7d5abb6906b8
MD5 c472d0e72b7ace5359781073c9003b72
BLAKE2b-256 6c7405f40f10886b2d31cf322bf974c5f54d2c9c2265f4a3c926313c9669d731

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0e10052f71f8826243873293422a95f68f9ea4916b6439a46a1228ffdde8fd8a
MD5 1f493f61e4fd6cb68c0de26fef4a8ca3
BLAKE2b-256 dc1bfbcc440b6442eca0bd89d21c3f2c4ef19406c27d3d66e8957462e76a5667

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 456b99b60fe0ddaedfc706b39eb3332e4b6c9e4b072d713e149e2cfa6e8a5584
MD5 08937b2c94b0f96f3800a8412ab8707f
BLAKE2b-256 16bf9363eae126744503d95062f8f49e85a2a530af6d2ab09ced327fdf9d2cbc

See more details on using hashes here.

File details

Details for the file usearch-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 855a1d879ae50f37b1128ddebe0f02a3bd6c0ede7a00f47db36edcf7f14dc196
MD5 2f36a391c14e7f0344b34332c0ee01b4
BLAKE2b-256 4b2b53a49e8bb6100497edc2dd0f381624c35c05adf4f3661333603092037782

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page