Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Required dependencies ⁵ BLAS, OpenMP - light-weight
Bindings ⁶ SWIG Native low-latency
Python binding size ⁷ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ Lack of obligatory dependencies makes USearch much more portable. ⁶ Native bindings introduce lower call latencies than more straightforward approaches. ⁷ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

$ pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Functions

While most vector search packages concentrate on just a few metrics - "Inner Product distance" and "Euclidean distance," USearch extends this list to include any user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models.

USearch: Vector Search Approaches

Unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip as a distance function.

Read more about JIT and UDF in USearch Python SDK.

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

USearch Semantic Image Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications... on iOS?

USearch Maps with SwiftUI

With Objective-C and Swift iOS bindings, USearch can be easily used in mobile applications. The SwiftVectorSearch project illustrates how to build a dynamic, real-time search system on iOS. In this example, we use 2-dimensional vectors—encoded as latitude and longitude—to find the closest Points of Interest (POIs) on a map. The search is based on the Haversine distance metric but can easily be extended to support high-dimensional vectors.

Integrations

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.10.0},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.10.0-cp312-cp312-win_arm64.whl (264.6 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.10.0-cp312-cp312-win_amd64.whl (279.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.10.0-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.10.0-cp312-cp312-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.10.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.0-cp312-cp312-macosx_11_0_arm64.whl (399.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.10.0-cp312-cp312-macosx_10_9_x86_64.whl (417.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.10.0-cp312-cp312-macosx_10_9_universal2.whl (782.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.0-cp311-cp311-win_arm64.whl (263.4 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.10.0-cp311-cp311-win_amd64.whl (278.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.10.0-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.10.0-cp311-cp311-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.10.0-cp311-cp311-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.10.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.0-cp311-cp311-macosx_11_0_arm64.whl (400.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.10.0-cp311-cp311-macosx_10_9_x86_64.whl (414.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.10.0-cp311-cp311-macosx_10_9_universal2.whl (780.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.0-cp310-cp310-win_arm64.whl (262.0 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.10.0-cp310-cp310-win_amd64.whl (277.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.10.0-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.10.0-cp310-cp310-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.10.0-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.10.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.0-cp310-cp310-macosx_11_0_arm64.whl (398.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.10.0-cp310-cp310-macosx_10_9_x86_64.whl (413.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.10.0-cp310-cp310-macosx_10_9_universal2.whl (776.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.0-cp39-cp39-win_arm64.whl (262.7 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.10.0-cp39-cp39-win_amd64.whl (273.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.10.0-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.10.0-cp39-cp39-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.10.0-cp39-cp39-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.10.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.0-cp39-cp39-macosx_11_0_arm64.whl (398.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.10.0-cp39-cp39-macosx_10_9_x86_64.whl (413.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.10.0-cp39-cp39-macosx_10_9_universal2.whl (776.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.0-cp38-cp38-win_amd64.whl (277.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.10.0-cp38-cp38-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.10.0-cp38-cp38-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.10.0-cp38-cp38-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.10.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.0-cp38-cp38-macosx_11_0_arm64.whl (398.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.10.0-cp38-cp38-macosx_10_9_x86_64.whl (413.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.10.0-cp38-cp38-macosx_10_9_universal2.whl (775.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.0-cp37-cp37m-win_amd64.whl (278.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.10.0-cp37-cp37m-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.10.0-cp37-cp37m-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.10.0-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.10.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.0-cp37-cp37m-macosx_10_9_x86_64.whl (407.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.10.0-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.0-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 264.6 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 6f92b5285a06e551db66e13ff3b34bfbab607e0ca69fb112b13fd398dec2c160
MD5 d60eafbe47ccae11964c10b424c1606c
BLAKE2b-256 a77211263c8cdab52ce0587a4db317ded9f3675fc51be7975cbf51f611bdc9a5

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 279.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3bce89d67020a78b7d9000ccb5493b3e88e747ae7d592a77e9995b46c7b0692b
MD5 ee2c4b9883c6fa7c11bf5a1985be759e
BLAKE2b-256 d26530e9e5c24d40de9fde35e2a30dd0dbc4ef1c8c497e1d0861197b9151ca66

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 798396b9b23dd6a7e6e0764f21abd22873c61d7a8c36be628ec137bd069d53b4
MD5 36263e72f2b2662ea511f355f14c80c1
BLAKE2b-256 0454a69391cfb37f1adb99cf3b9d34510c3549e94d7a800546ea39acea1feb0e

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 36500a9c5b61cbfe0559e62c1ca7b153c5e30c0db7033f8164c3f55840c9be3f
MD5 415fcb138b622e66abccc4aed2baab67
BLAKE2b-256 e4bc7f6d04d1f6f3305c23c05c70512b5401df7a5ab1815566f8ab1b5b3c2d72

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8d456e49a2e1a911081ebae4757089fad1a0f1946b44eae3790c5d3d2bdf03ca
MD5 e94f43c18ed86d569ac49e4fb8e873c3
BLAKE2b-256 54f7d88c486d7ed849a7fbbbe67da0a2e80fde4628520659f4338666f19d07d2

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3b0e0b9ea4d8cbe2e22d4ba3792441a1be020520eeb77e883e44767b5b1c95a4
MD5 d65b4e68b3edfd3bd94331ce43947468
BLAKE2b-256 92c99f3d5062797de89c1e97030b4d54aa70ea3b9bf94e4ec9af8041b197bc47

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 00cadaa0352f77ed0b37b8169e1d613f78933870f132f7752fa20af6bc2b3e80
MD5 526141d3d798ec82dd83003275a92662
BLAKE2b-256 3d3967714696d39578cee979592b353a007d6bf66a86fa70e2652a6eb2eb898d

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d034c6aa3f7365fc2d1c1b882ca06feaecd5d13271c0af34dca132140a34554
MD5 f61fc3d34a5b0d2bb0e1df9c4aead1dd
BLAKE2b-256 113c87898612e2136d63c739e04d6f471cedd2f15e07dfd9797ab0341654bee5

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e3cc8afbd42c70638bcc6dc893b31dddfa45c640613f9a61bb92ec84b8e4d8cc
MD5 ede1dc381051a788ca025e781304c2e4
BLAKE2b-256 c50746f686b7abb2dd53dd4a9b115621c1b044e68aafe036fd82da374adb1159

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.0-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 263.4 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 aa0199f51e10f701490347589e9de89bf79e61814ed10b0ec05b5834105b4920
MD5 cad4f18cc18e6cfc69ac1b4c0ba48152
BLAKE2b-256 38faec3606cdcc26dccf05609fa882be37230b049171709d8752d3e0087e1039

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 15f8a28849a4419897e2627945532364cb9f272b49118f4f4cd22cde5fc3c94b
MD5 373756149eec1f96621475b298b2e390
BLAKE2b-256 5e0045827e9c2829f1090d8c5e6cda664d6bea589ae69c073e31b3d74b8a5dcc

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0e9e3a371d2f68c5d4e716869ce0cde0015f0c4cbf6255b56d6f9a0ebfbac606
MD5 bd062f5092bf0ac3d4d56352a8416d9c
BLAKE2b-256 3c72c70105f78340b316adc67e56e8d4d3b891d2b8bb4ae08165b2be1992d7ce

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 999524d559c83f0b83843f4702c9e38ecf6757836aa1677ab8e095f117809754
MD5 2a642ee68c3cd0a5f7552c188f9f3362
BLAKE2b-256 9870ec32b917d1737807577a05035959e57a166e2b20b81e230d639f67706b70

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 87095eb0aac354367eb3aeafec7857c8ee9b43d83ed55a9b8cb913500348c293
MD5 5b49f801a5c4526552d4e6f68f4b6b42
BLAKE2b-256 324bd8a6b14567dd65e70907a1759633ec1abb0123ee2d1ea000c3a4f1b591b0

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 803a3f1e9fbed5053c83ae165993d5de7328b118ef9bbebce0a9b8ea48415518
MD5 ba25368562a9b923f6197d0b0cc7427c
BLAKE2b-256 76be774042d8cfdc667708874363110b19980ad51e1017f8f9ad6df777460252

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b9a0c188d9df5bf51e29384897217538e72c3a5b4b6311c26be532290323c09b
MD5 edd238b4f0e82a62baee15f3640a6955
BLAKE2b-256 4ee933bc723a49d1817de0f1a7bdb66eb0add25d0ff714fdc711ced2295e7ada

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14d156f83a846c838ca19cd36c3d2e4ce6fc03673c5b7ce57e63dbe0f8d642e0
MD5 f63a1685d508c7775088add6b72c4ac0
BLAKE2b-256 4422063bb68e083b7c2f484563fb3d1810bc85e97491199ba749989eb8beb9c2

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 788f5f82ef528328ea6010c45d3066757332793ae0e78b1e98637a2629263f03
MD5 24717aadd555f3a8585c2c4ba96f5c9a
BLAKE2b-256 a2d878f49ce6378daa55a3dd43810bdf73dc4d512560aab23af6bc438a2d4ff3

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.0-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 262.0 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 400a55481fcc90d49634a905929f64b09215431ce012e4b4c1d9b929fe077ac2
MD5 b8a7325ec926f6c558ecbd09c7d5db14
BLAKE2b-256 9bfd993103c50132895c023d1e441228988f46ea37f6c76fa939f238517a0c80

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2922aab0c4d5ab69db2c12ac066232a97f852caa5a7330f720b8e5464ee55208
MD5 17e341db128e56bc5c561513032d0148
BLAKE2b-256 9ca248adfa82778d0b6d6c878847bc8367cb8b2e50842056f97b765b78ed5f4f

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9c5bcb0f8c9bb08651f1453b75971f6c9b9f7ae363647b253d28d2c02570f94e
MD5 9a7926eae9d3d35238272363feb0c84a
BLAKE2b-256 aa26434837fcbcf3cce5deb4c65751cd9fa91def2e18dec957356d65a2fd68bd

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 bb87faa12d25869f30c2229f099894a57f3ba4cf349bac36d085809c9bdb125a
MD5 aeab61fffb6cec02abfbb04effef6b40
BLAKE2b-256 40ec5652d5df8b6490f0f54c1db156749d7a47e6eafd33d85a5b4c7696d5cca2

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1b5607a8f62cb428a3a7be89aee7d91b85419380f7e4bc66ef851ad615ac7027
MD5 795f0e9f9b84367ec49c87342f240e67
BLAKE2b-256 c4a82dab5ea889ef10c96f6c50a410eb73bc0c735bdf08d067d8ee74302faa2e

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7f7f3f25c10dc71d14ef6063443c61f86dc51e770793ebe519963976c6da6ab8
MD5 2cb59fe96f3cb89fed09b740a50252fc
BLAKE2b-256 5dadeb8209af5ded365db13fe5ecd6daf55c95718c35e741e3ebee2239220542

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d67c6acdbd84178e0a64f3a6be6a088825503b80e69dfea4c016bcc1a490f540
MD5 67543c5695395ffd2c666f39a6423d83
BLAKE2b-256 e143638c16e0c579fb7537231ac559bfb358bf179351499b6f009de1bd10bd77

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a469ac54d8937554603e25cbff6d1333ee838f3257f3899523892b01c9c774df
MD5 80bf19aba59904132a002c86916c37d4
BLAKE2b-256 76317deea2dbc6dd146607c8f5a807e630766c883b9da4db2129300f213e71bc

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6524264604b296b63a44a2c80893b86edafc6bdff0d7b6d22e482a7a73608ae5
MD5 be8f629817f193e52f7269178e6532af
BLAKE2b-256 8d395bc4f6461ca577b0cfa664abee42076d11ff1dd474633e1ec06ed683f584

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 262.7 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 0535be5b5cf417bb7b7f7256a3e1a3c00f93a0c86a03e249c5d68d0d36882fa5
MD5 0b9333b1854ed03712c3ed6b5649ceff
BLAKE2b-256 6143ea535b3b75179f1f3a937309beda093002e86e3be809ed363ecf4a907c7e

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cd087ae87b80c81846047fef64a09553c6146f4adf0ef5022daaed71f5f997be
MD5 c90ab63fd1b1fd8d9cee7b33f3c5310c
BLAKE2b-256 991cf94fff0bbb9a7540108aa47f7541f41ed3a62a20db7f1c1dc5b12537705b

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0b024a0d96b989f6ac8ddccc353acdaaba4c92fefd6d1241a52e4e8ff1c4b0b4
MD5 347d82e902e4bf09c57c9411bb7ce24a
BLAKE2b-256 93ca80ac4a5b1a29c7870ed3502ea7e742a43405ea1590dcf30e10690b47c21d

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4a12e84d8d87bb7d8434b1fad077ffe620d7112757ee0252209501adaece0504
MD5 1f89c28381598723c5482c97ddf9f69f
BLAKE2b-256 34de3016e64a0f2505a9f0304c3b8e2c3579869532e34aeefb82207f5fbe5808

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 efd161197b14bef1a09ce45ace760b03c5bfefe2e4fb15f2287274d35e0bfd18
MD5 3fbcf05398bc2ff5b2dcbe4b76d4fa04
BLAKE2b-256 1214529160ce2260ce1c24d83c99d6c41036f3732390c8cae6658c4ce6683360

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b3bcb5a2fbad5fbff121f21f3968e94c4c49785b69dc03e11f11d5e213da1309
MD5 4f706050ca6d15344d0a1531fbd5d0f6
BLAKE2b-256 4254eaae405f11345c1483ea91f7181b2a4ada905bc6becc3100ec607de83d66

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3f2c328f910f21269a8bca897813b2d5576e37359892f2322cafd1348266c6f8
MD5 e1c9f690116f5be7c8e3072241bbcd1d
BLAKE2b-256 f044cf7de6a679cda96230add267e91386ee6eb44dcaa3be32b74d4abac8c2c5

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af53812827b2f30be3055265dc4f62c4d4edc0e9ebf03aa128c61e2987072118
MD5 b6d8af0bc735b602c6fe03ec40aec333
BLAKE2b-256 0f897997699e24db66a8091f0ac7906dcaba820c4b5bef90f7c71a6e50b4b17c

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5aca96d09bf967d8653214fe4438f1e186e904f6cba102a8042bb2a3797e0f72
MD5 3db9deee536f2396883dc6f592c48603
BLAKE2b-256 34ab1a4066a2d4e805ebf66fc7ce168b54279306ddbf1b706ebf29de079c3bcc

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 277.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0e5b2b9fd132f185c9448d465b3b6fff475aed0ce4f315ff96e01937c6ec2302
MD5 68cedbee0beaad48dec81efa0fd4eba2
BLAKE2b-256 5ada8caa4bac7edb20ce72dc1b0ef10bc47969445f3c428c4e5778463d3f3edd

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 49e41651858d0ebcf12d2d4075ea52fc70a98dd8fa01af0221de1451cc6d9a46
MD5 2660ad97c8c9e27711dae89eb6b939f8
BLAKE2b-256 6754b21496b5970c1cd4d6b6ec67c9823b75d8a7d00b223d0f9a414434856a0f

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3deb4632fcb5ad708ace9fc6fca3752289cf33b6555e5afee7c4a6fb991b1617
MD5 3a762fc82dd2eba2025c1803db2024a9
BLAKE2b-256 c765f8c2f2d691a7a33199cd97a440180546f1950483175c456848ac44e4d9a4

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fcb8852b8c406cb2738f449b69b0b163d109b14cb98ca6ecdec45ddfd6f924e6
MD5 de749dba4d1e47630941437234c1322d
BLAKE2b-256 4fb38b3eb37a41f5b226ba14d16d0bdf9abd8bbfc99141707aeca4d6c2d27e66

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1c43defe983adf8a3d7b03c7ff8bb26e3fe13f0d0f9c265347c97057e4a1d35b
MD5 6730a1290002328231201925ca687a8e
BLAKE2b-256 38737c14aba52d61154dd43bfa34b0439026c1affc7223038b34b7923a6e5609

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9eda22fd52015221a23ae51ea990393a5c8b611070d47a2258a51de320a84c9c
MD5 088ed97f3d9ea289ced4eef019431409
BLAKE2b-256 7e2ebdcbe473d23423184365807c7ca1983829a8e1572a40d13d4b6c66076ec0

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e3b1fe52fb0b2b1c16fc82810c0f309692b1309c45681adaf23b99209a97ad1
MD5 d598276e3f0dc743e72090d375524e54
BLAKE2b-256 34960b19fa56ba22de62fb75e8dfa8d1a691c2430f35867c40b955c46553d3dd

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 aa94018517a021cf9bf0ea09c7b4e466d28d657dbf0a861fca8406a7b54df91f
MD5 2865ea8ba3e3e246c0dd4a3a47b949d5
BLAKE2b-256 3349ce92aa22b207cf9389e4c65637f4a970fb18b11b47abab829d1a7392bc18

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 28bfd6d77b4c68021798036da4f2458d2c41b9230c629228f0a2fbfc39da8dae
MD5 20e937a7d8b8f6751e5076909550fc62
BLAKE2b-256 69c70f96291ea355ec74e9aba3ecd5379627edee0a9fe99a541c267d5f49f8e0

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3cedd4a62d7dd650e1ff9f71a9a0e22089b9e433ffb927eddfd03db56e08a0fb
MD5 ca25bb5693b93b73d0a233a32e38824f
BLAKE2b-256 964c52192c2b7ffefb9dfcaf63e58b101b16aa276f6084178a5e72ad3551d0b7

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 6c60e2fd5bc2619227c40f4d692fb682c985fa831e6286d95e65845dec508f42
MD5 88a8de37733a0df44ac93842c3547f79
BLAKE2b-256 e92df1dc66c9b1c9a2925e6b064aab2ab475906aa9cae28a3bb2bf851c88ea73

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cb4f35f8059895bdef0789cc8c0207d6c3d371cb916c373e4f2972f6fb09e47f
MD5 504d63675136397fc18f3f9691c9f8f0
BLAKE2b-256 b4d35b1993154c6fe0accfbe0cbfc4fbb9123c410128e18d41c8caaea412b570

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1aa36fe9ead985d33a4e99723cd5a0836534ccb586c7f50121d5263dcdc62478
MD5 3386b88ecfcedd243bdb0a53139e4207
BLAKE2b-256 4460afc99c57e3ef8df8a2e0e0596b012e0802a690415dbb662a259cd79f952a

See more details on using hashes here.

File details

Details for the file usearch-2.10.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3f57338b0ef7cae40b2ae7c4d68581735e0535bb7cf7fd4489a501c2c8559b8a
MD5 ec974c299bd0d823a7e42acc5c8862fb
BLAKE2b-256 03cc0428bc4c5436cd38ba95d1525207faf71e8ec4522e94c202286c57da3b51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page