Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Required dependencies ⁵ BLAS, OpenMP - light-weight
Bindings ⁶ SWIG Native low-latency
Python binding size ⁷ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ Lack of obligatory dependencies makes USearch much more portable. ⁶ Native bindings introduce lower call latencies than more straightforward approaches. ⁷ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

$ pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Functions

While most vector search packages concentrate on just a few metrics - "Inner Product distance" and "Euclidean distance," USearch extends this list to include any user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models.

USearch: Vector Search Approaches

Unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip as a distance function.

Read more about JIT and UDF in USearch Python SDK.

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

USearch Semantic Image Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications... on iOS?

USearch Maps with SwiftUI

With Objective-C and Swift iOS bindings, USearch can be easily used in mobile applications. The SwiftVectorSearch project illustrates how to build a dynamic, real-time search system on iOS. In this example, we use 2-dimensional vectors—encoded as latitude and longitude—to find the closest Points of Interest (POIs) on a map. The search is based on the Haversine distance metric but can easily be extended to support high-dimensional vectors.

Integrations

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.10.2},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.10.2-cp312-cp312-win_arm64.whl (264.6 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.10.2-cp312-cp312-win_amd64.whl (279.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.10.2-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.10.2-cp312-cp312-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.10.2-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.10.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.2-cp312-cp312-macosx_11_0_arm64.whl (399.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.10.2-cp312-cp312-macosx_10_9_x86_64.whl (417.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.10.2-cp312-cp312-macosx_10_9_universal2.whl (782.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.2-cp311-cp311-win_arm64.whl (263.5 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.10.2-cp311-cp311-win_amd64.whl (278.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.10.2-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.10.2-cp311-cp311-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.10.2-cp311-cp311-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.10.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.2-cp311-cp311-macosx_11_0_arm64.whl (400.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.10.2-cp311-cp311-macosx_10_9_x86_64.whl (414.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.10.2-cp311-cp311-macosx_10_9_universal2.whl (780.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.2-cp310-cp310-win_arm64.whl (262.1 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.10.2-cp310-cp310-win_amd64.whl (277.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.10.2-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.10.2-cp310-cp310-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.10.2-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.10.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.2-cp310-cp310-macosx_11_0_arm64.whl (398.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.10.2-cp310-cp310-macosx_10_9_x86_64.whl (413.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.10.2-cp310-cp310-macosx_10_9_universal2.whl (776.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.2-cp39-cp39-win_arm64.whl (262.8 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.10.2-cp39-cp39-win_amd64.whl (273.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.10.2-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.10.2-cp39-cp39-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.10.2-cp39-cp39-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.10.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.2-cp39-cp39-macosx_11_0_arm64.whl (398.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.10.2-cp39-cp39-macosx_10_9_x86_64.whl (413.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.10.2-cp39-cp39-macosx_10_9_universal2.whl (776.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.2-cp38-cp38-win_amd64.whl (277.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.10.2-cp38-cp38-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.10.2-cp38-cp38-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.10.2-cp38-cp38-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.10.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.2-cp38-cp38-macosx_11_0_arm64.whl (398.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.10.2-cp38-cp38-macosx_10_9_x86_64.whl (413.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.10.2-cp38-cp38-macosx_10_9_universal2.whl (775.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.2-cp37-cp37m-win_amd64.whl (278.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.10.2-cp37-cp37m-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.10.2-cp37-cp37m-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.10.2-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.10.2-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.2-cp37-cp37m-macosx_10_9_x86_64.whl (407.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.10.2-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.2-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 264.6 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.2-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 7770d6f7ecda6ea21d0dcc510db56e0205bf394190d03552dfd2d1280547c441
MD5 3dc36096397233f45c5363755fe4615f
BLAKE2b-256 d541102669cb07ea649b4413d9cb764e26e896a21e741331d2d0fe5adeaf70e7

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 279.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c69127945046eb137d53235830f88476bfa8bed6068af90ffc15d59f49f785e4
MD5 f017d9b809bd4fe5b452f2ea21670130
BLAKE2b-256 5256c0d9c69aa8f2fb05bedf6baa7a802a3eb3d3b03b005a51b1ce31a793a73b

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5ab4d58393667143c33671ccba4d76026b72e3645adb79ab6b9f238d9ab8d62b
MD5 eddd6dd788858c78b4411a6ccdfdf804
BLAKE2b-256 c27d23a18d51f17d7e5afe4f62c58b2b03309e975fbd7909341ad91354b37910

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2433e2957877b94dd267d48e2c3b175368203f28d947d4a8c7a862ddb76f3c7e
MD5 f3fa7fe92e3ad619fa6db767225222aa
BLAKE2b-256 dec480b4c020fbeda7ea471eb9053a1b02702954e023771fc1db823f01c2e88c

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2eef015fb69b8b4bbdcffbc93f4801984dfa0e4f353f9e70ecc7c355f70b2bba
MD5 f65efbb79363bf810e9f92192369ccb7
BLAKE2b-256 32a8be90132a84fbb2040dba91a2a338e70d2523aa21eb78ef44e8c711006fff

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7ec9b3d341e55770927ae1a3a8de748247d7f913ddd2e3c94fce9f67a8f7ad02
MD5 2bdd7c256418f7888a4bb406a370ed43
BLAKE2b-256 1983c185bda9a51010459bb5f135773ce002fdbe783f48466a36b416d58f263a

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 90b4256358c0ebaa5c6c2c5d310c1ab91aa93c43e997b94460668d4bbb944d6a
MD5 04c31b98c02b03b49c5054d7c42c8c84
BLAKE2b-256 bf2616e5fae8b450aaf358944b98eebe65f3a665fb416d8973e6b0b6fe35d9b3

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 312086d680585ca191c014fdfcbf3f9989bb320d0bcd1842eb56fd54492d6fc5
MD5 947392b707e826abac0528b1b33e76e3
BLAKE2b-256 a98015c4165e1127e586b6e2220d9666572640fb1dbfc9fef27c0abeb9b46210

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6c9d9c0d9460d152b20149a059cc7cd9c89bcbef44ab216f26abf016c973fe75
MD5 1438cc785c21f63c9ed47491ec891677
BLAKE2b-256 316d94d699a0b7083cffb6b38ce56a69a10afe449d679563a198a95c973e9edf

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.2-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 263.5 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.2-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 c321f95df3ff12e8b15696991660012a81de686dd4636a8cd971ac2179e0a0e2
MD5 58cf7f11622c215b7f666cb0e17e38b1
BLAKE2b-256 6ea1390bfaf8a250c651399a7b7ccf609598ff8d5802d0933c306c287da4626b

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b9b776cbf1c2cb7bf61d334cfa6a20bc6468555f0d6aa246dcfec1ae750fae7f
MD5 c9c2be4a309cdaa3f472096bbae665d0
BLAKE2b-256 bea3150c075760e607a71d23b80d793d3290716015d1f896e00b2cbcc874b553

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1fc9013531e223f93d33e64586f7f8395f3a3e4a335fca96fb39d2e3cc8804f7
MD5 ebd43244efa2a00aae5640c5c38094d1
BLAKE2b-256 d1d04fe9e0cbc929063e27b30b3a8f89e97c76a22a8de93dd7885f04f2d7699b

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 96bcbff5acd3f2a09a25473fae2984b740deac85e7cecf0ec902092a2c559278
MD5 df333126e848dfcc6f9c2ffc8816fbbb
BLAKE2b-256 b26f13fe4e7a27a99bd29164ea8dc62be830572ac201e99cc04dbbc3b10a2b9f

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f41489b783b1d573a7322d497a0ce552661298cbcfe7fd50b2927a79a28ba38b
MD5 0b89c04b4fede0da78791a600c0832cb
BLAKE2b-256 b26abd9d5df1d3348eea9c09f7551cd5c796b9909f630eaecca30dd13bc26473

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 93044b79c802e79187b08599048bc2d28656fd17734cae26fec0958f11f2731f
MD5 49918c1a09426f34f4a1bc95b12d4927
BLAKE2b-256 07b856adfd2302129814eedcc00977a5293fb1d96af2b1dc3d09bba4e754020e

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 038a7e8c4acee35004be0e3ec39a052615230145ac6333592fc36f53c3d7ae8a
MD5 10d8ea3a6fa62596a5d4e5e2bb6f240c
BLAKE2b-256 0664f5334f2ca61798acce6796552663f64988ce5306ca4452d34152ad130165

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b02c6eaa3797f572132db5ac295e431d853df053f74b3ac10a17ac394c12937
MD5 b357df9c2749db3938d9e29337e00e57
BLAKE2b-256 c14ead9f0c427f7dce26ddfa841f17b948918612fbbaa70d0b3d74bd370be310

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5744c32012bb62074363142297d7d039b1310261753b5ca266e919b8681e75e0
MD5 08e0cb60721cdeb6b35ffdcb8d13f4a6
BLAKE2b-256 4f613eebe0ab91806c07be2f7d7efe64a13e2034b851fbe3e2fe24970e1da3a7

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.2-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 262.1 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.2-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 69d82369101dc00f4e98f0b79a26cc73499da7c47561717893484fc0ae80c896
MD5 e8f27a000d132a4a15983061a30c2752
BLAKE2b-256 a9755184a95b0322768177bfaa9f69007b59846721e6008e75f808991634d0c9

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8781ae412ab8fbdf3dd331b3b9cb84728d451da979ad5a4f1adabf9f3b1f36da
MD5 93950eaf2eeaec8d7f2641c520ec4d06
BLAKE2b-256 5456fac6d9b123c23ac246219ee430e4372b0bc1caaa3d2e1d28151c497e6f6a

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 81dd252b289ed17e876311add19cf2013bb9365f7fd5945bf3d91366f10160d5
MD5 1bed614c4adb6e89ea1b055f805a4628
BLAKE2b-256 09be9eb1058dc26798afdb652eb4dafa9a94140158eb42232b0f08179d0a1aa7

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 bdf99657674dad54f08bb0c464d52de42e8b641491636634893a2e05f42488ec
MD5 7d9d2a6fee2e47778984018584c39eb0
BLAKE2b-256 cc491c0cc461a18f7c9cb6f44584894476978eb52d24e262d79a5e5c8cdc866d

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bef3ca2bd2466af2a599b97c2f3ff7acccce1b0f10dea02ff0757304d8c069fa
MD5 59b8b56c88dc3796c6ee9db914202dc9
BLAKE2b-256 56c126997adf18d1de2ac2014082d9dd7b50b52d4a6c8ca7d4f5bcfe6707230d

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b4c773954e769ad711fd7da5983ca5a1a048011a9dddfeda449c769afd12368a
MD5 36ebaf75025148bbb209a34cb1ecb47b
BLAKE2b-256 e400b67c93a1ef552c8f43f2fcc399ff2a8dea0ab7f4a21949bc3d27da3d0bce

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b497c43bf2944030f4adcbdbd5cc678c7633198b5e925b7570e5e9781e92fa20
MD5 d0890841a23fa5cb9ea4750b241b7798
BLAKE2b-256 0256a2b6346654094a5fb48d8cf09208baced8cac351512cf18218135c838d95

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9d05baa29fa7fb4a5eea52a3d8da98f3dbb9542911588a15d1577d0250c7d6a
MD5 90f9b96d1bbe919d5279b0f2979e4b37
BLAKE2b-256 02f6b732b7928c9a7298bc6e53b74a70dd944360e4a9469dec6877ea9be0a66d

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 af65959f73269ced4e270ef7849c69f68728ff1c73d6f70be85552b1d3dcbc93
MD5 b224a18eb2dccc0f11e0e44eb0f49ee2
BLAKE2b-256 d0478af832e28d447b753719eb4684858d7bd428ccac82bbe2413a6b237a8ace

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.2-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 262.8 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.2-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 16ed3c753a99f3e0dba0dc5368756be08c0ed027710ca9f4a455b787a6914d8d
MD5 3d63f35765af58e65e13225627f89564
BLAKE2b-256 b11f8f8241cf491ff80528cd5f5fee80f3db6c133f2fff398768297d03332486

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5f963de38660b0d915399af77b4e6a80d1585b953edec1c8a3a66084936947ce
MD5 3d8c724bde5e843c85d94cbb9052e7cd
BLAKE2b-256 3def7112c7f33178585b273a63ed06587d7129f3fd47ab9b78f5d69153f72695

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 dbb1c8945d8a710c66eb104ea2f86b7e775f9ade77ff463ec0f61df3d776665b
MD5 874016ba7d647df45a8a0aef7ddb6b14
BLAKE2b-256 ea83c058b53e6797df5f5543e8e8636e759eebc3878bf592546d965166b0eaca

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 685bea88d5d0c46b371b0fb336abf94864a85da20248cf49c50dd546d495662c
MD5 98fedd4d33a748ffd9bf82207680e4fe
BLAKE2b-256 1fc1d74f13fe852a5fb293f3d62400909406590f4dde4586a850f7d0888e0ba5

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 476207dbfc42ce901cde27ddbb531143be12487b2e2f4c2c772a6407a8520cf3
MD5 828ff7bc0e8016e3daa7238950d67873
BLAKE2b-256 32882fc641333080c3e07a7ecd062495a51095f071d62d25a2e1715b0e2e0981

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0bb02d39b160607d3440a05877e1ea8e363cfcbf60fd51b6fa405e12e990c53b
MD5 c86002ff24b16b56d64ef0118d100ad2
BLAKE2b-256 827614fe5c378d96c830650794f29c173ce9a0409e0492fa3885e5c8b1545ad1

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e7d92a266ce206d8aea09e47bd23d0ec0bb5b1695b9416f2fd5cff75c332dbac
MD5 15686e4cf24c75b9212474b7ba7b380b
BLAKE2b-256 917fb5ba9b279605c1bda5ce8713fa83cacac2b2e57eef13e45fbbc84b134866

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a10c85ab8d31f7b169fdc376af26fd894c101ff65d07fdff1bfa87532b30c8f
MD5 fd5490f4847d7f631ae253b714a830a2
BLAKE2b-256 f7bbb9ef84085704fb5b91f42b8abb8d8195efa71a7986cf67aa40092a7050b4

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7ce21b754a792e44a1a8de839457202662613989aaa43a271982521efbd6344f
MD5 6bb12cc54b124f973a69ac925d1c1934
BLAKE2b-256 6d6d94b16e4bc2a646c4d3c87af86549997a309883af3a01790ac18e563a35dd

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 277.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2080aa8e25027042725cbfb5835ad929e24dc40c371b67c937278dfa3f1dd763
MD5 bb7492e37454a948c30bb874c0db0d67
BLAKE2b-256 620a9e74c5beb4aa7a206c41894cb7d10071fcd38fd41b47283dd7f0513d90ca

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 476ba01cf52717d7469a849aa649d15e51b60c95f921affaf1d3d93198854292
MD5 3f1c5a23f6d163a47899d8ef7b7b1957
BLAKE2b-256 5d0682f20231007b01b0bbf49af2af7b7e0139786c13664408c2d8104765cb1d

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e51ccb098b26ca0c8a920abc49b586d3588176be5af6882156a5737b5eff83d4
MD5 e928da2742b6cffde63e184ccb7a54eb
BLAKE2b-256 915663946f6112e067e8c8b92910467d8b6b0dd66efcdfad0599caacc0b7706a

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a5d6efaa5be93738bc75f341afd378efca65cb23123f20eff1981f669c45ceed
MD5 66461152895b5e6418a8c35498084a18
BLAKE2b-256 a5353eaa70caf274c3801287a3c71bc15ec0e7616672308d4e6ebeb1a5a87061

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 13fdc4dbeea3e307909507e238e1851beaedb07397c305a6aeae18e496f8430a
MD5 799a2339a3ab4bcbb7ab5293c6db88f4
BLAKE2b-256 26589f3917c7a25925f8ad9f21dbeb6ecfcbae7a922f72b3129769789682f60c

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ba06cd1d550a925a7ed44ce85cf1107bd5e3e4116a898720eb29544fb273526a
MD5 e8138e642d6bdea0ef7df69601222239
BLAKE2b-256 4e6ba35740f6b4e772e19d56fba92cabefa9792bac0fd7110da4516549b05f9e

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d5e04b6eae17325218a205b4e02daa04adac4f140d543ab02a63965f77a69def
MD5 77929a09a585932dc1153ac3f9e66bdc
BLAKE2b-256 1a77cc023f50140f09681fbee97fc6fc3613718b6cd1b2ddcfa60fb8195d93c9

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3b2908576f48f17b37637f0c66565ee0a57f8b3cc06fa7a4c38ded7c46a07373
MD5 a3c64beed13e6ae85399eb22cf16d26e
BLAKE2b-256 1e2e9236c525874f2c463d20b7231b69abc0c58c78b7157434cdf97c1c4825f6

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3b2410544cf3925d4f0d9b064592affe375b4bd7b52bbb87b786cca865429f61
MD5 858cfffbc2031d0c2cc521d40e4ebfb3
BLAKE2b-256 a1def45240a1a6c40846666cd6a09bf5f48bcad4c89eb480e8aec93e0ab7469b

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 55214995368e6858a89bcd6126df1d7568b33e94e9c4ae74013eb63da04a3f17
MD5 ad95f38dece91c6fc1f7e4cebb89d6af
BLAKE2b-256 1bcd7720bc032cb703cbf4e92735f5dbafd8d05bd1027b0d30fab92daf71687b

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2584f98801facc38d86c27259be3ea6cd618c5f6bd11766ddaeb877027206c95
MD5 48f11ced9a7e27443d6ab9f24554c0c8
BLAKE2b-256 188567f838e015b4c30cd392af9b23c7401aead0785de6fff4010dc2a99bb557

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1bf24d1a20b462aa6704ef336adb524a0a9b1d883900720b9ee4e6c2f3c33c7f
MD5 c5ea5da8efccd90201aa72fbdc9babcb
BLAKE2b-256 0eab049671daa9be637bd9f0d65e9fe3d591af13d7fd7614eeaabdf9270288a4

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bd94317cb936c04908bdb968ee608dc0ec44f5137d343a27b61865232efb8171
MD5 fab620f3ba2a9b3dafa782b4a50e1356
BLAKE2b-256 ba24d192af3a457f25d7c323c4c6bbc4653a2e31356a5c48b28ae9cfdb738d25

See more details on using hashes here.

File details

Details for the file usearch-2.10.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 340d98ea795f7cb2d301b4b3476dccc8400ed20bd45ce4d93628e37d1a7323cd
MD5 214ee214f6af937cb8e150b80740d119
BLAKE2b-256 2723787b94dc9d7c28becb620c0ee068db7dcf7c38309fae45e40c0fb1f0abde

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page