Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Required dependencies ⁵ BLAS, OpenMP - light-weight
Bindings ⁶ SWIG Native low-latency
Python binding size ⁷ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ Lack of obligatory dependencies makes USearch much more portable. ⁶ Native bindings introduce lower call latencies than more straightforward approaches. ⁷ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

$ pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Functions

While most vector search packages concentrate on just a few metrics - "Inner Product distance" and "Euclidean distance," USearch extends this list to include any user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models.

USearch: Vector Search Approaches

Unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip as a distance function.

Read more about JIT and UDF in USearch Python SDK.

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

USearch Semantic Image Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications... on iOS?

USearch Maps with SwiftUI

With Objective-C and Swift iOS bindings, USearch can be easily used in mobile applications. The SwiftVectorSearch project illustrates how to build a dynamic, real-time search system on iOS. In this example, we use 2-dimensional vectors—encoded as latitude and longitude—to find the closest Points of Interest (POIs) on a map. The search is based on the Haversine distance metric but can easily be extended to support high-dimensional vectors.

Integrations

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.10.3},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.10.3-cp312-cp312-win_arm64.whl (264.6 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.10.3-cp312-cp312-win_amd64.whl (279.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.10.3-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.10.3-cp312-cp312-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.10.3-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.10.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.3-cp312-cp312-macosx_11_0_arm64.whl (399.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.10.3-cp312-cp312-macosx_10_9_x86_64.whl (417.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.10.3-cp312-cp312-macosx_10_9_universal2.whl (782.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.3-cp311-cp311-win_arm64.whl (263.5 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.10.3-cp311-cp311-win_amd64.whl (278.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.10.3-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.10.3-cp311-cp311-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.10.3-cp311-cp311-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.10.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.3-cp311-cp311-macosx_11_0_arm64.whl (400.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.10.3-cp311-cp311-macosx_10_9_x86_64.whl (414.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.10.3-cp311-cp311-macosx_10_9_universal2.whl (780.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.3-cp310-cp310-win_arm64.whl (262.1 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.10.3-cp310-cp310-win_amd64.whl (277.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.10.3-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.10.3-cp310-cp310-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.10.3-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.10.3-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.3-cp310-cp310-macosx_11_0_arm64.whl (398.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.10.3-cp310-cp310-macosx_10_9_x86_64.whl (413.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.10.3-cp310-cp310-macosx_10_9_universal2.whl (776.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.3-cp39-cp39-win_arm64.whl (262.8 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.10.3-cp39-cp39-win_amd64.whl (273.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.10.3-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.10.3-cp39-cp39-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.10.3-cp39-cp39-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.10.3-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.3-cp39-cp39-macosx_11_0_arm64.whl (398.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.10.3-cp39-cp39-macosx_10_9_x86_64.whl (413.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.10.3-cp39-cp39-macosx_10_9_universal2.whl (776.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.3-cp38-cp38-win_amd64.whl (277.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.10.3-cp38-cp38-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.10.3-cp38-cp38-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.10.3-cp38-cp38-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.10.3-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.3-cp38-cp38-macosx_11_0_arm64.whl (398.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.10.3-cp38-cp38-macosx_10_9_x86_64.whl (413.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.10.3-cp38-cp38-macosx_10_9_universal2.whl (775.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.3-cp37-cp37m-win_amd64.whl (278.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.10.3-cp37-cp37m-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.10.3-cp37-cp37m-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.10.3-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.10.3-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.3-cp37-cp37m-macosx_10_9_x86_64.whl (407.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.10.3-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.3-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 264.6 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.3-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 a64cbca81fdbe4eeeaea95c382a5208e5c9486e8fed0ce1276157e7b49b22e84
MD5 fc74d60f7317105d38e875352411dfdc
BLAKE2b-256 56e9657ad44c1113ae235f8fb32e56a3ae0ed09617e9d1ac53c6d191c638eb4c

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 279.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f8fb09a2daa0fc7637edf2c8c5dacb790b12cd92a6cd215d08814361cd4daebb
MD5 7a8938c11c4a311d94b13594f1a27a0c
BLAKE2b-256 de0f8a9585b8f299425c63c09aaaf74ed35a59547b60bb1ce7d7afb1e4e81cc2

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bef9b197040e782cd431bf7c028967d6211dec86db349875557b174051da32ee
MD5 e59d264f1ba6ca16eebad99f97df5fe6
BLAKE2b-256 86d69eaa9e831c5e20ac339c6f8726c2e63a7fe7888a7e16c6cc555177181b3d

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f3461273093296dab272e1752d4f9db324c50842e7409b71151514041e0c0830
MD5 6d7ab691c443fda13264b019a07aa923
BLAKE2b-256 bf876a41f29a4c781b9a1aeba459d41e58006d6f2cfd3a8d80d3102fffb5a785

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9415a1e49fb66a9e64877c9d6595741698626a2e8aa313506589663fd6c4d5fa
MD5 2948ea37155e478c282e3667859e3e1a
BLAKE2b-256 96bdfa031aafa5873ad0d28d2a000a1a038ebd2c1215acfbfa164cb276c433b5

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4038f4b9381e18872a274451fcedb0383d0b2f65d04638940e81fa1968da4154
MD5 a83129c019774b19b72f78247b158b29
BLAKE2b-256 ce8817727da861fa6ddae85aa92e1d9bbf9a996b010c42595c264a69df96556f

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 95b36db00cfc5b4cc38042f4e15bbf0c65689e4e55467608cf91d2a3a4704ec6
MD5 545bdaab39e371b994abe66d5f3abe10
BLAKE2b-256 5823403554505b3a9f2df44b148dbf168810afe6ecfe5479eac4f70bca2e6358

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e04cb962e5da0612eaab4bde7b5ed85417368e9729b45f74970b899f25186361
MD5 6054f940f73fd5857845d30216dc6c7d
BLAKE2b-256 a5257b8d95c85721c0be574a9f92ac718e35ac9b949170f6b3b1d41b4a71adb3

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dabf685b19d688b75634cb431626e135ac36ffe317d4c799eac72d64b5c0faa9
MD5 a8185bcb65cbf4ffde45a1f04d3a82ba
BLAKE2b-256 b50b01ccbac2481a3a62496c33500351ed67068debafb3c4b7debbcd9f42f7dd

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.3-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 263.5 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.3-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 86697fde027364323f1c8adcf3fbda515f6ca009d777abc4d50fd016cc8b9894
MD5 eca67501116fab4469d4ad341ea89b2b
BLAKE2b-256 fd8ed22df277ee57d79f842efdfe81aad6ee998f33d36401a9cd8fa4336b6131

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7773018429b3358ef7b56a89cafe6f031aa19eaae73f7b4a359bbdfd3d832726
MD5 2f08a63d206deebd6c0dd1cd74f732e9
BLAKE2b-256 38073fce808ce0dcc281c4a2f1ae7b2249a49b483eace96a4269d328c3d985a6

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5348f2fa5a851d6daf8f223f7d88fc349195305b1c9fe6c0b9d5cdbca8fed537
MD5 69b6c6a810486790fe4ddec2555b1bcd
BLAKE2b-256 d2c703b6c76d338e8359418eb82e02e1fc18e3eb415cf1e01bd6a7a024f9ed54

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 392d46e527b8b4411efb6a8adbf848eb9d2fce90ebd85fe91f13c1286c0e0982
MD5 3787f0762e27c1b30938a51bcedf6c2b
BLAKE2b-256 b68a4407389a96f6081a03b695d3b5bec19b58485bb348d8d2926f48d8d35ddd

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4752b76541466b6eea6aaecd1d68044c8f3e74e110fbb021f52043e0238f1511
MD5 29a84c5c4886a879fa3044b20d89646b
BLAKE2b-256 1c43e9a79a56f1412abc14d057614abf6457a9d5d10123824e042882d7f09760

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 053f6995f9888964553800bffdda7fe6fe17e7e1c0ae1b446eab1aaf9d4843d8
MD5 bec052e18e0b3e28c8d9b5b654dd2e98
BLAKE2b-256 b71f56684e4ccbc62a0dfe759537557e7465ffddd483d15a766d5485b4e8656e

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 139514df1e3886dfd62cdd06d49bdd6381794ccebdd722fb25b9ccc65f77710c
MD5 dbd71dd2ec4e706b27d1ddfefc137f4b
BLAKE2b-256 36b3cd995a15499969862d41b18891ad34ca80a35392faebbce1b36b449d678d

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a1e0abe4958370acfc9b1a89fa5743d7936ea266912144e122cf2b653a6eda45
MD5 7fd2529ff2ad55ef0964a0384ba23752
BLAKE2b-256 e733863754aa5666c529894208e51d67c0dfbdca5a72c4d7c769d115bc0ca16a

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3101d2f618c95f55ef0f5958b5ab782443df7aaa9f4fc55217b51b7739dd3877
MD5 81cd668026be0ec20ad55a206728b674
BLAKE2b-256 ee79b43139861153d72daabc85ed5dd8a10c0a95344fc447b242c1e54667505e

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.3-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 262.1 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.3-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 f0ae9faed295c7ccb3802b8a08b465190c812c861b218e95346a0c35132b19f4
MD5 f628cf509d5f7f6741bebf34841a6497
BLAKE2b-256 3bafd6263c6f39657c1a48c58816e544eca6c5cbb669fc70a6df157c7aea3414

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 46600f2ed1f61b35230abc4b7d4b43d533443be71ba71ee3158ab3fefdc15ea9
MD5 3a6fbdd4b3330a4d8dc12353c4f66a87
BLAKE2b-256 a8fa5825d0ec4230b22e5133c42e0459e40aabae82f4e4331fb2c32519e2445b

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 140b32f41f3196b9c0cea0bf06edb5e0969bb84b1d9f41a6a36c4a339fd67f9a
MD5 59ebae74a69efaa0f0b5e28fcf6a7b63
BLAKE2b-256 266d595a0ab29b4938e6478dbfce747ec34f3e86b1c80aa19813d7e68fb22781

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 24acf6d06972d4b6604575c0a9e5f7423d123ce48acfb8f78f554796ddeb386f
MD5 eb17bd230a7124858946a27f8e2aa0ab
BLAKE2b-256 5107f8ecea45ecd9c88d59d29e874c6ea33619a0a0746dfbc6a92c4ac3099ede

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9eab9217723d3781b179171356e9860f9ed96dc3c15056ae6fa732749d976858
MD5 054de758af45ccf665f77f42d59f7bc8
BLAKE2b-256 f67713f5e02a54391a93addda365ae37095cdfcaa39999e17e27217befa4eeaa

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 24543ded52ca184ba020a7f25992a6ee769473a9c315ca979bfe19ba71230d69
MD5 c0736e13fd7d5bc5a105c7297d3b1a6b
BLAKE2b-256 78533aeec341e2dc10095cb68c7a3be81b920ac4320c08d9f7c26c121cb83fca

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b140be51ea30b87919b2dbd67ff130c9a45e371481768bb76a51b772e390bd5f
MD5 7d8c3ef6b93efe6dd54dbaa1eb21d787
BLAKE2b-256 d6aa4772767fd90f6d4647f35f0e2be86d65516c1fdab8306257f2ee113b07fe

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41b7a129fcb41ae2ea649fba24a47d08d9b60d1fcca975dc1b000caf69cd2338
MD5 c781e81f91d4f37a307ac4eba86f2b90
BLAKE2b-256 522385fe27915deb7f7d11994787929e8eff337397c4da16f00c39de83bd112c

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 80a1a6dcd36dccc67691394025149583a21e2f2f0f0a518ec651f55eaefa99be
MD5 9912386e83a11d8dda17def3707b5dd1
BLAKE2b-256 e45d11551bf67a4745dc6bfbb2a8747c0c05d0759fbbc476cc2a54dd79db5971

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.3-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 262.8 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.3-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 4b5c48f51b78110b149e1bed6e1989fbca832e0d566e4f6e4082f0bc0501238c
MD5 e6a176f4a00ac2ede4d6b523df8b2303
BLAKE2b-256 88e8d4d93d2c2a52bef269bd82aa380d4cd2728c4dbde3268b2a66a38f2bd21d

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ec378fd082c0bb122475c75b0251af1595b1179fc9e6242cd9963587e9746573
MD5 861c991531f48f2a6478f07dd36edcd8
BLAKE2b-256 3179979eac40825647403e0bbf261eaa3e057d8e6cbdfbfc9003f56c1711bdfc

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 25f5250107c5b9dc50de4c945f80cf7fd1ae597ab1ff255cee38991c6ac94527
MD5 ab1312dced559f93fad291e74ab2b8a3
BLAKE2b-256 b1c4ab161929735cada25a4e65a9aaf9cdc4b922000df3c1d2844d97c1e69a7d

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9dc03b9db8fac190c815139bc87f8a98e67b4bc60db78cae67fc8ab5ea7390f4
MD5 7c614dc402fdb9bcd1ad07646038dfda
BLAKE2b-256 34f938e9ec7f744c8a5521b9f6e4bc5db73f89ba73eeb5a9957323312323bce5

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3d23406549abb7567c58d641bd84d027bcb1dd3f4ef12dfc39a351b579a5096d
MD5 e784a83d56b9ca5c4a79cfcfd0158a0e
BLAKE2b-256 b519cb9612f549a731ea42010bd4313bc6c14339c976f7caac63a95175a61427

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d051db98b107329b357c0b9b8e7598a99b33e5e104cfd75874fbb3eac2358392
MD5 166573b51885b70f905ef343c3f548a8
BLAKE2b-256 b883305de9f732bc183eac5501799f053746aa8c8b1626b4129d9f6de1335f61

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4123f453b476a9a472cb905d9e84feb3a7b94be0ce9b481e24ab222b8f946606
MD5 877123c36988a2cde93efa854fd34503
BLAKE2b-256 d92ec2bd382d206351a9acf0dad33908a29ccb622d72a89eea75426333db84bd

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd354449aa09d964f63bb36c87fa9b8a8168b3203de0be76ad824c975cb285a1
MD5 cb0d36f38e3d999e6d01eb5de91515ad
BLAKE2b-256 a0cd89910a1c9fd63d6fa5da8f6dc824d8b20e833c04be31e6e55448112b9caf

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 03778db532aa65f0bfe0b86f1a2eab1046bf935f5ec6454175f07706a497f3e6
MD5 48cf42cf36916275aabf6e105f4f8cf1
BLAKE2b-256 c5a0a2c8794bccd94b97857b5ec79989204d7097cf5ca7a2c082ff80aeff0b2c

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 277.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7275fa890f906fd9f6a2afec48d42e65684bd1f1b0ec9a36b70d9429435c1683
MD5 ef63680d990f1f502bd57858191e55aa
BLAKE2b-256 ab74efa7d4c0b67994fb83d6b69003629a5944743716ec02e0380d59ca12a887

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 be4b3bc22dd1f53abd38b419c6cc13be09bd1195ca35ef4cbc16067bd4669b9a
MD5 3778f7e56e31fba693fa865281f93599
BLAKE2b-256 6e7f801f37f7886c03162db624177044678ded8240064119561155b6637f49d5

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 61e3dae86856ab071c4cc7c660faf7c35eab60fb34961a42f081fe3a6f293957
MD5 f7b7d90328d3bb2e575dbd494ff57c79
BLAKE2b-256 1c7f3c5ba2708569f02a40c31d31ff135cc93b1aa058a0e87259b0891625fa50

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dc5d43f7725ef8ee967edeca43826659417afed8867dccb0a8c4f4e6d1e4bc95
MD5 4e30b6abe5940267c51e03bf7babde0f
BLAKE2b-256 77b52f7eaf85dc76eb5db61cb210de737a25e08de0c36b142d747697b20130ea

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6f3475bd5bb46b072943657847aca06b96c42441a3326d0c42698dda7a0b6413
MD5 61e60a2d9cd9723a0a370c4d8a82663c
BLAKE2b-256 5cad39fd4812590cb64b42524af7b5a0fb67d93dd7effadcbe49c859738e5152

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1faf51b05c82ba38972c9ebca75f9092fe7b540eb151b14b290a74167399c907
MD5 49d4e9bfdc15acf1531d655ab2d092bc
BLAKE2b-256 b63d1bb11d592ef1829c98fbb3b8058b7e5ae9ac7bcbb84aea2dccccb760f58a

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 715e857e146029bb1d327be3cc0957b7d81eacc9a35fb98050aa1e04384ea528
MD5 81547655e96b7f7fcbadc36e2ebbe22b
BLAKE2b-256 69894e1b7f61f7a0203df0fdf9ca1aee9e8b594c2a38b6479ac0aa867b1d1b49

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 858d79fd6c98c11f4977bef37324b5732989feb0e835693e939eb400900e8ec1
MD5 9b742479e3b34d81d0d968cbc4d86e50
BLAKE2b-256 7d84d570208c6d3d1c25fe23364ea82e3b12be2604a577f90cd97697908114e7

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6bce3d3992d5934bd9e8a303ecfa3152b5d608a1c5a0b5cedcb81458e42d65cc
MD5 42badb22b4c42c4c391b7271392bc9cd
BLAKE2b-256 c900da4d27a8bcfb0c3fd711657fe6ac0122155d22a7a3159d4ef66dcdb77780

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5d02c5ced9a7e9d2fa588a3623111bb07372618ea79241f846ef6879bdd5c857
MD5 c4725b30914c34178562f4fe06b18a7a
BLAKE2b-256 c7392c3d7158ede9ba8572f6e0108f8c62116655bf5a9856e6b0954c4ebdbbb7

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 42418a073dd4a2ab48c74d17dc02db486528c0384dfa60f16d0a4f4dd57cadc5
MD5 93d46aadb5f146f3e70d73dad70be2b6
BLAKE2b-256 d7cc608d345a12bb6ad3569670748102447acba21eccb398e6c2ff054088ce5e

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f3afd754820625e7aaa0a8d86e51869fbecff066cab8f956464328c13164db9c
MD5 23b51146e96187d83dfbb7e4ac59118a
BLAKE2b-256 a67978ff694fc2bac6cfa0762b345dad50a42063c8895cde570f26e62417c454

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 eebec8e42acd5d02305a808fe66d1bf0509529f4829f9e37e390f05ad9bcc0af
MD5 929118334e990e27dd7db7be04588b90
BLAKE2b-256 02ac708c4f4656047a33bda19f9d377599260004a8205f540f98e2f1a29e49b8

See more details on using hashes here.

File details

Details for the file usearch-2.10.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c26172b7316359cf7471ef26a5447f19aaa57e8b49d5870ca58ab600bd5dd4e
MD5 9cbcd9982a3a78ea2a3394e164afec86
BLAKE2b-256 b7cff5bff46f440bd59722fc358991775ae19494d91872ac1b25cf5309e4cda9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page