Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Required dependencies ⁵ BLAS, OpenMP - light-weight
Bindings ⁶ SWIG Native low-latency
Python binding size ⁷ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ Lack of obligatory dependencies makes USearch much more portable. ⁶ Native bindings introduce lower call latencies than more straightforward approaches. ⁷ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

$ pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Functions

While most vector search packages concentrate on just a few metrics - "Inner Product distance" and "Euclidean distance," USearch extends this list to include any user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models.

USearch: Vector Search Approaches

Unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip as a distance function.

Read more about JIT and UDF in USearch Python SDK.

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

USearch Semantic Image Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications... on iOS?

USearch Maps with SwiftUI

With Objective-C and Swift iOS bindings, USearch can be easily used in mobile applications. The SwiftVectorSearch project illustrates how to build a dynamic, real-time search system on iOS. In this example, we use 2-dimensional vectors—encoded as latitude and longitude—to find the closest Points of Interest (POIs) on a map. The search is based on the Haversine distance metric but can easily be extended to support high-dimensional vectors.

Integrations

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.10.5},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.10.5-cp312-cp312-win_arm64.whl (264.6 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.10.5-cp312-cp312-win_amd64.whl (279.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.10.5-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.10.5-cp312-cp312-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.10.5-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.10.5-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.5-cp312-cp312-macosx_11_0_arm64.whl (399.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.10.5-cp312-cp312-macosx_10_9_x86_64.whl (417.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.10.5-cp312-cp312-macosx_10_9_universal2.whl (782.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.5-cp311-cp311-win_arm64.whl (263.5 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.10.5-cp311-cp311-win_amd64.whl (278.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.10.5-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.10.5-cp311-cp311-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.10.5-cp311-cp311-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.10.5-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.5-cp311-cp311-macosx_11_0_arm64.whl (400.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.10.5-cp311-cp311-macosx_10_9_x86_64.whl (414.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.10.5-cp311-cp311-macosx_10_9_universal2.whl (780.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.5-cp310-cp310-win_arm64.whl (262.1 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.10.5-cp310-cp310-win_amd64.whl (277.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.10.5-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.10.5-cp310-cp310-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.10.5-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.10.5-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.5-cp310-cp310-macosx_11_0_arm64.whl (398.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.10.5-cp310-cp310-macosx_10_9_x86_64.whl (413.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.10.5-cp310-cp310-macosx_10_9_universal2.whl (776.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.5-cp39-cp39-win_arm64.whl (262.8 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.10.5-cp39-cp39-win_amd64.whl (273.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.10.5-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.10.5-cp39-cp39-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.10.5-cp39-cp39-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.10.5-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.5-cp39-cp39-macosx_11_0_arm64.whl (398.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.10.5-cp39-cp39-macosx_10_9_x86_64.whl (413.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.10.5-cp39-cp39-macosx_10_9_universal2.whl (776.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.5-cp38-cp38-win_amd64.whl (277.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.10.5-cp38-cp38-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.10.5-cp38-cp38-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.10.5-cp38-cp38-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.10.5-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.5-cp38-cp38-macosx_11_0_arm64.whl (398.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.10.5-cp38-cp38-macosx_10_9_x86_64.whl (413.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.10.5-cp38-cp38-macosx_10_9_universal2.whl (775.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.10.5-cp37-cp37m-win_amd64.whl (278.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.10.5-cp37-cp37m-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.10.5-cp37-cp37m-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.10.5-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.10.5-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.10.5-cp37-cp37m-macosx_10_9_x86_64.whl (407.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.10.5-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.5-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 264.6 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.5-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 a8a5bad983dc83db60644e9e2b62068ffce9136d4a20b25816de4138f24c25b0
MD5 512b30c6946fc13b30bd67c53a6928f0
BLAKE2b-256 dc796aa8db9854624b7ff2f047a904ad40296a4c327995c5dbf6f672d1aa7485

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.5-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 279.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1d6e75f851f34142f90f214274c2718ec623735dcdf797aa761abd0c59a6fe80
MD5 30a0c49b7edf4f344b072393e544ea79
BLAKE2b-256 ab1cf7acd7aa2a9160b0fbfbddfb880a67eed99365accc8e16f205f503229167

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f8b6433b78fdbfea1199a2e4196986aa6aa62d024a42ed26df02f2ae22365659
MD5 fcf95c4bbe70708dd16f711dc784330e
BLAKE2b-256 b3d2f6cd55ed7300abf4170bd7c703e4d575f4c00c02577b19ffbf6e85feebd6

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 25ef8646491bfd9b9e1aff15722627bd0002c02e1f8119b34f6e22846a7c3068
MD5 65e67fd3b8d3a4344d242ba0a7cfed08
BLAKE2b-256 6d11faaa612e2b05432003286fc39c331d40723bd2faad19fbe4d9b27eb5aa29

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9abc1859b4d862519935d6702f418b0eb9476a1b9fd5ff1333c52e08a06ec9c3
MD5 e9393b5191cd553b5df2396f726f4c6b
BLAKE2b-256 8aa5c2dd42f2593f10ec0c690d74854ea2d85aa94c962adbc1f33b22240db314

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9554e8b0ce40f19205423567825d6b7528b9af6c750d29390b94d276b6819e2f
MD5 6687e0ac0200869d9fb1d543e0b6eaf4
BLAKE2b-256 dae34f0c8207b30ae5c79ba5bb192c6d55e13ce600b0adeda1adb9ee68b0de32

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 465f6ddc8f5e213ef3025ed38631d62b927fc66cd57cac77c4f4622d7f91fcc0
MD5 129416267a9c703124aad127a4bcc5f2
BLAKE2b-256 33d779701669ba2f22113365ea85f9a7d5d72c701a3be92226d52bc4357f0125

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f6043a19e41b6ae1fa17efc5614cdabf05026e8a5dba9de952e563ca01f200a
MD5 be71d96d73d1be191ddd0e9570332f59
BLAKE2b-256 7b9640fe2bdf06569da3770d4d6da96b9a6e450de89fc87cf868300096b492d6

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3a14e043ad5e994f802a20533bcee10ada8f63bb9da203592f5de250b688536c
MD5 bf2f14a1f271e670b3ed93a23c79edd5
BLAKE2b-256 fbd10aea973282f5416d11e1213f724b05179beb25a22ecba29a44f4a8403344

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.5-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 263.5 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.5-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 573c8afbecc3affad6504be8f601d2a4cfc4fc1edf65f29e7c54640f8ab809b5
MD5 8feff11b3ffc88693a26a9493c283c0d
BLAKE2b-256 ce3ac1196b3b261677ba422bddc05071b12e21f6535c2e623e1445b89bb98285

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a58028ba44fd5e574c0f5d6c497081ee91ab7f52614329f4a83cd4c852fca9e3
MD5 4e747205b08efa4b8cd36dd851fedf4d
BLAKE2b-256 42d0d4a3567fdbf45dc8d5655a6660cdca9d10c054403b36dd9273caa893d457

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bfa95798e3b2b66ffe1a0a7c9c7254511ee8d5a8313812ac2423da6ebc7f59f0
MD5 81681fb847d6905cf528ebeb1239f448
BLAKE2b-256 79107a9472c3d744faaf06479e5a64b65670e316eb2218b523499a9554219c88

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 058e28ef061b26479b61b8a4d7c27c1e7e8bf82980ebebc321c51c127a6bc87c
MD5 3d80ab7481fae96f0533ea069e31a639
BLAKE2b-256 fa0ab95325911e1fa5ba9ffec03be417746cbb9d87345c578cab64d02a6ebaf5

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 30bb2b25237c8e8c00841e9186b8499ed2e68a57190ad7df304954f7acfb107c
MD5 a0e867926d636558b66c90573f24ec25
BLAKE2b-256 a1d49be99b3cda6791719a3b8d391d4cc4b4062be5c9622876613bea11a53f7f

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cb08a25e10a751fc634284cb24befe57524519a2c4e89ca6868c7fe3fea0587b
MD5 f044e9d70f282a11a2e03a4a5ed8e6bc
BLAKE2b-256 a9e4b537be223a781310ebbe60e99362683f3d809f715e64da88336a64540cc6

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a9ed91fff2a1230ae0296c7424c584ea249900ddfbc884c3e7305fb294bc8996
MD5 1610fb259c9bfc6c5bf462441feff2d7
BLAKE2b-256 e893670f494deaa873b8fa0e26326ecfcd2227e3a95bbfc7d1ba5f142d51a764

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27b1ed239ea70063b225eb6cf1d43d292342ced7bbd1b914330afac7ba604d1a
MD5 57d990813f91b542a1e478ff56616b99
BLAKE2b-256 0308441534ecb60a5e0d1608b8c79c79aa07e8eca3e66a138395b5d9995c4f19

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8fe7a2be30aff6fe385a8a44461704843a908d4bcfe47c5db0854d4736932b8c
MD5 f312d56386fb0911250957dd6bcbfe83
BLAKE2b-256 ffd54816edf0f17588c40fef91b31eb3915c318bb55239dc6b44f691c0452ce4

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.5-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 262.1 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.5-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 e1f0d041563c4040d5ebd6e9fb33e77244e30867afe30e098762d35c45eb3e7f
MD5 df099650a59654957910e5e38b8cfefb
BLAKE2b-256 b0821a0e635c2b179fd445e4d8b3db5890278215bafea0ac2093f8cf634a240e

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 82beee7ba00431f049ab3b05c5b478176484649c3046ec1d03eb2d9d4a4dbc0e
MD5 4dfb4cbd491cc09aa5c9ffebe21a5877
BLAKE2b-256 347705ec28c939666b1896b9ed6ea353f9ddaf1c3dc9b9ca22fb3d56a89f8ebb

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2076324a6c057076648b11d8aab14ebc586c9a1b282d7bfa441bb618e36e77c1
MD5 b925cdf42ce237497e785717d9d9bf5e
BLAKE2b-256 be105c135da91327fc74ac9f15771d995122630140fa31b7787ee185e439ddea

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 345d65cd702bba8ed5574762f4e340162106075871d862d163bc735d5bde736a
MD5 12a04529eb9b1ca5815356c66f31a4a4
BLAKE2b-256 40c1eee235215ed9b2e0938fa87b97b9bab13b63f6baec6f4b551eca5b9c1d2b

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 abe150dfc746495f7c2c086062be49273b93c7fb3970266125a404758cdecae9
MD5 78f31fc94b5e187ee82e1af8af2ffba6
BLAKE2b-256 562db6bea0db5b359505c802b261df09dc4ef6e63401a599447aff3467fb5cb5

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 027d25e8f059d33b1ac4b3bbdb9fda3a141ed9ce5d1facd3a335d600c7c32b6f
MD5 a97e002c14861adbd5833524c3cb71a7
BLAKE2b-256 804d71d2d355e2d3ecd5039f01f8934bb2bc16e477ec225068b5d14ab10d92f0

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 482ebae59b81d8d27303968f9def3561030238dff9054c785a7cb6519b977c24
MD5 96961e165caabab7d1974930c83da8e5
BLAKE2b-256 bdb3d731797ddb73cd67472b77c4637e9defa85f610c3286adfeaee93a555ed3

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb2c1ba159330b2c58007ff0e0abe469e6a61833668a2841bd67112c93cdd256
MD5 0a6f2bb8f734e5057b4d9b8592835318
BLAKE2b-256 c508e3075b9437f426d49743eaef91f1d837601729cdb73b36ebcd850131f991

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2dee21623b0d8077d9fd9ccf438927960a43f30ece1d1c48d315c1cd1deddef2
MD5 994b5972fec92d5b58653a79f647182e
BLAKE2b-256 c276b5dc6bf5ba28e45746141d671194363c9ae09afd61f2f8457587ed704d4d

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.10.5-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 262.8 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.5-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 d1ff1d46596b01757d58c9ae6ab729caa8445b9de1c68b8c144163b337694549
MD5 f8f1a8a85cbb9a93765e71a7481ed475
BLAKE2b-256 6fb4ad43e51c1e87e47c4d8e0d82bf0adede7eeb452611d1bcd6a4bdb5a3f4e6

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5dc152151972ad8f8d61920a887da2f40b60d24d100e184d08f5acda3da885ff
MD5 d298cd2b0ee1992fd606bb2a15a1c5ab
BLAKE2b-256 3e63424ec2fa0762c1b3b81b66dbdeececd23c977d3ada97db76f7173f464b84

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 30341842a4d39f63257910ca19507c759e71b28cfd1232fa4057015ac2e05110
MD5 9860bbed269198b4263ec7a28c959ca7
BLAKE2b-256 be42ede769b09da2f6bc06ac9c1dcd38f6644f3d2d397a3760d35ad036dced18

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5d140944255911c8480680c1ad4c5e2f19b47a1c78bbfcfaeaa0c245019d776b
MD5 59dcd1df77fecf355687222250c3bd21
BLAKE2b-256 43bf2f43dd369899890d3dc0b007f05654b24b56466591a72127b34e67475956

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ec1f6a9ed1749c189b6f7576952d13a7b3d49b77e8babb7729222fe6d5b409dd
MD5 3b94f4165f2052d8ea31193c6de3fde6
BLAKE2b-256 6617b812266a78369d5e2f9753c6149c0ba0a320b3275eee081e11e61f772d96

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 445ace8d4118ab4fa7b06f0b99e40ad53e72f12377242d12135e80f347578723
MD5 e7960b1f29117c3c952d16cd6394830d
BLAKE2b-256 f97815ed40e0c161e382c8b8236e188593742b6f871049accbc88f81843f588b

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e2e9cd428acfb450eaa27e2fa459700621bd44c548baecbdeb70b4f29b42aaaf
MD5 b8e9fa4002a27d56ad2a8116f02116fc
BLAKE2b-256 5871ededcb14e6c3b6c9d970e5f2b33ca7dca0f1d1439a4b55c2b9f456d06f78

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ed4b3aeaf7960587d2b40857c3fb20490fbcd7f59e3fafad25b949a24494fcb7
MD5 23733623cab44205e5ff108a5b9ac351
BLAKE2b-256 27749abbca7818bcf309bac59c2c743cea13f0193ac73fb127eae225831b6af6

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fe94af4475c7ceffbcbf621a773261978543c85bb5a4adb5054fba584a0bb400
MD5 384f4605894a843bba2628ec9c2bdc46
BLAKE2b-256 5dbd69c3abc4147a03594fda931c00019f89ad91581bc31dc42adef504e949bb

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 277.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 39d39bd47d8ba417d25e0c9448270650d19a7e85f66bfe16b4fdd231015af829
MD5 314d98a3b32ec9d294eac618212ddde9
BLAKE2b-256 b910a65ec7c9a3474a13958baad827be98860c5180378d065a44aa204dc3505a

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 daf93348e10bb62943165e38c56223d38226ce3a89994edb220c749e77dc5bbc
MD5 93f6e8050732eadfa348f4942afdefba
BLAKE2b-256 4408cad0d913be111398c1bbd017ffb12e2a7f3e453782bade9400ccf07d1033

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4f81ce670a3ad3189a2ff0d6bb5f6783bbf466ff6a0ff81269f9a077db49fd91
MD5 1dea8c85dfd6d5b3667565f355ac8d04
BLAKE2b-256 827c11f28b4e3b6e70c05f55c0d12f6734de97934f0d930632683a6a61f26c44

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ea66ff5554f119e2e69e499417bcb8a72446b4fda00d2b4571394f3c7fcc4b14
MD5 1f16461ad2919b0127186397c3369bb1
BLAKE2b-256 237b64e71585ed5b7e8586eda0d4565361ade2c95a946b1c002785e1f9112df4

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 658f22748ce0cbd7e4de1777002bd71f6e0a669902a8d6db5a593f86c3206477
MD5 1553b3f4375380f202394c1849bc4d9e
BLAKE2b-256 8eeb026654fff78fe62e529b74c6e90f827cb6b362a16701edcaa635f6bf86cf

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ec4052ce6675cadc84c202d5017cc3ad941e179c5a624bf52aab39ea038b3f9
MD5 6640951138c4dd7f40b1fd2e51a80d02
BLAKE2b-256 cc0702fe989e0ccf80d4e90399ce6fddb9edadd64e023d7af69f83782da00042

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4019fd766026bfa7be476c677e64802ab9a21190b9a3b966c84ceb77968fda78
MD5 60f02490727649621663cb171b70621c
BLAKE2b-256 136976c313ae256fd493b561e7c1f939b7ae8443acfd163204c4983d8f4c52c1

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 73596d030b1df46d364955212140e22c4937217c358a02e44394825b1160c8a5
MD5 1ff6a4fe14a0ef46c12848e5b3fdfc79
BLAKE2b-256 9f83b88958aa574f697282d13aac995eb6a9cffce1dcaaa998fc6cfce2d5d9f0

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.10.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.10.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 129cbb0bf10ad7520f626336e767d1f946b2af40e7b3c46974d974e6bd5e28e5
MD5 8fe66b6de5ca35b9b7026b4e59eb4e01
BLAKE2b-256 a1f8ef465a5291930438e90f5d29a31b560c4e9dee959aa79aa844344abd3403

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 df6d7e3ed88b10084cb6ac4a5aa36c21cb0f2aa3056c2df64dbaa51699e7f89f
MD5 261fa40aeaa52dac84b79c01f131bbd4
BLAKE2b-256 288ea116e7a7b203826cf297b5ed13742f908db3c281bc9257a4ee039b3f85cd

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c7e739b3adcfbc43f37ef370662b08cfb5a3636add7243f3e0785bdb76f8ceec
MD5 6c5945a880cf6b43847b2cfa1d44a604
BLAKE2b-256 6b979b17154ec412fbebf930d7d4ce148a1e7d14fe26f4d3705b55180fc5c428

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c3ccfc346e94714f16a1e6026133a1dc4e22135217094d1628752207579ed365
MD5 d5104f1c71c8eb0d4462196796979d73
BLAKE2b-256 30bc0ef5590cbaedefc500f0db69bf146c8aec5754afeb142e20e7417586fc5b

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6b69dab4441a93bb147ef36f004b27464f0e451413ab71161711a6bbb78b3ebf
MD5 01bf37382bc70092d28bab21f2676c0b
BLAKE2b-256 0fce5288a5f6f6f1af26987e5112ec5cdae7a25887db8e80268ee9247a0a6eab

See more details on using hashes here.

File details

Details for the file usearch-2.10.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.10.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e94212a9fd41efc3fca287e3b5d080a492d13135c41a06f49b92c656ba1de60b
MD5 ae59a668ec67edc1378ab6b924e138d6
BLAKE2b-256 587a91791cc0f7acab03cdffae2cafe874d7b40c9d563e93a836921560f594b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page