Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Required dependencies ⁵ BLAS, OpenMP - light-weight
Bindings ⁶ SWIG Native low-latency
Python binding size ⁷ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ Lack of obligatory dependencies makes USearch much more portable. ⁶ Native bindings introduce lower call latencies than more straightforward approaches. ⁷ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

$ pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Functions

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

USearch Semantic Image Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications... on iOS?

USearch Maps with SwiftUI

With Objective-C and Swift iOS bindings, USearch can be easily used in mobile applications. The SwiftVectorSearch project illustrates how to build a dynamic, real-time search system on iOS. In this example, we use 2-dimensional vectors—encoded as latitude and longitude—to find the closest Points of Interest (POIs) on a map. The search is based on the Haversine distance metric but can easily be extended to support high-dimensional vectors.

Integrations

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.11.0},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.11.0-cp312-cp312-win_arm64.whl (264.5 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.11.0-cp312-cp312-win_amd64.whl (279.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.11.0-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.11.0-cp312-cp312-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.11.0-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.11.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.0-cp312-cp312-macosx_11_0_arm64.whl (399.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.11.0-cp312-cp312-macosx_10_9_x86_64.whl (417.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.11.0-cp312-cp312-macosx_10_9_universal2.whl (782.4 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.0-cp311-cp311-win_arm64.whl (263.1 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.11.0-cp311-cp311-win_amd64.whl (278.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.11.0-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.11.0-cp311-cp311-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.11.0-cp311-cp311-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.11.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.0-cp311-cp311-macosx_11_0_arm64.whl (400.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.11.0-cp311-cp311-macosx_10_9_x86_64.whl (415.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.11.0-cp311-cp311-macosx_10_9_universal2.whl (780.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.0-cp310-cp310-win_arm64.whl (261.9 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.11.0-cp310-cp310-win_amd64.whl (277.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.11.0-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.11.0-cp310-cp310-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.11.0-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.11.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.0-cp310-cp310-macosx_11_0_arm64.whl (398.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl (413.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.11.0-cp310-cp310-macosx_10_9_universal2.whl (776.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.0-cp39-cp39-win_arm64.whl (262.4 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.11.0-cp39-cp39-win_amd64.whl (272.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.11.0-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.11.0-cp39-cp39-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.11.0-cp39-cp39-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.11.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.0-cp39-cp39-macosx_11_0_arm64.whl (398.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.11.0-cp39-cp39-macosx_10_9_x86_64.whl (414.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.11.0-cp39-cp39-macosx_10_9_universal2.whl (777.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.0-cp38-cp38-win_amd64.whl (277.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.11.0-cp38-cp38-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.11.0-cp38-cp38-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.11.0-cp38-cp38-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.11.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.0-cp38-cp38-macosx_11_0_arm64.whl (398.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.11.0-cp38-cp38-macosx_10_9_x86_64.whl (413.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.11.0-cp38-cp38-macosx_10_9_universal2.whl (776.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.0-cp37-cp37m-win_amd64.whl (278.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.11.0-cp37-cp37m-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.11.0-cp37-cp37m-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.11.0-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.11.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.0-cp37-cp37m-macosx_10_9_x86_64.whl (408.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.11.0-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.0-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 264.5 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 5c644a77d716f57c26fca4d5c72b8986fe58d28e25fe386a8b842fa219fae5eb
MD5 021d3d9af78498e36cc8c00bf2a21178
BLAKE2b-256 754e51345afc270dc2955f315b9d82c0f578ed878ca459ba69dc79602bbc96bd

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 279.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9ef787e3bdb72900ed7ee539961901eb2950d867e393fc5fd2ca049e4cd3748e
MD5 1b507136bbc6b25f1b76628b400cd1da
BLAKE2b-256 c9bbbaa56ea0396f49561cd3e5a04e20a8ba4816c43e62ae8ad85df23b7b02b7

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6f16fc299c56144bad70b637f952e6ae35de43f4a53cd331661abdc046de5de3
MD5 44c9fb9eb12f12721f2b6c22abf7c077
BLAKE2b-256 abac22eb7fb663732ca2ea8a018cb0b69ea29fedcbdd80570988be1076ea8629

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d646f53305cc46ea3668a9ca2fb4a6105f27ca215e275f4401de44041dc4419d
MD5 83de8af474135c402b27900d396b0289
BLAKE2b-256 216d48d8fa1bb92a2f50334955b7d202bff73ad8b9bc2475d8cf2b15d86f80c1

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6aca1e498c225ccbc1cca1875e05ed7c25c73a4737f955c542138c70b6ee1a74
MD5 a11f9c2407ae4d60aefa3bc94333b9ec
BLAKE2b-256 1e577b00fc4875abb8b2ad008a69b84415e8f1f446af77604c4dbdb94af6fc93

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1e916758c1f5121da12a288bcbab6b2db3f86b05f7a65bb18ece70be0a867d77
MD5 cbf7b16ed4f5606b47f8ca727676a639
BLAKE2b-256 74c86e9e82d91a4a617cb8ee4fdde451b122c9668f4e533c665cfd5ea0472dc2

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e20052006c15c04cfa57560c6f2bfc7b7a0cf6367dceca84d24e76f82124333
MD5 4e02143b1e2187edd6e5bda42cea6d6e
BLAKE2b-256 0a38814657b1a290b214973621c3aa2a9f4e767c233aa258a80d53aaab24ada8

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d9f49d1133090f546e5b80dfaae10b319f6d81a803fb6cfafeea616d88b09450
MD5 50d0403151959c330e6989bf8eb00f5c
BLAKE2b-256 eaaab08ed1ee3ea1d1180056430b8f4acb9f6fc62740a4aee629e4b9728616c3

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c7c8078d6565f68ebed4b3b3f486a08724475eaf32a9aef99926f73ed4724ba5
MD5 779203d78843b18463f45a7ef12b1f4f
BLAKE2b-256 5642bb536b712f3940d7eadcc230072486d7d3911a523ccd973148b3ceea6ee0

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.0-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 263.1 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 09ff1aa489d42e4d7b36e07642443e7a304df47ec31b58714c62b1523a736a36
MD5 9d9fbfbdb1a4afb4b0ff436186d2b948
BLAKE2b-256 6160d5ef3433ac834fd4405b867c8ce038ed0f4f7da4eff3d6315ff6188f3b81

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 59feab2191e74fee18edb16b098634e097a21fd07b399ed45e8dc0730ed9d43c
MD5 94b1970572f40a8024cd4e687e0813bb
BLAKE2b-256 f38a68dd8209a9c2ac25e3b8c48ef09b3099fedbd72998905e47c90ce6f60787

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 70770b134b0d19036f3680d2bcb81b03723fe6d07ea27a61927a405e06f5586b
MD5 44dbafaeb3c608745860da8a0be6dc02
BLAKE2b-256 b7992d78cee19f1877537e2a160f20766d2308bba3ac616836a4270936599115

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 afc88e08d449d1ad22f10dabb797c2a905f15126b23e11104c5d11ed6d555b9e
MD5 66ab5572b2a5bac55527e2037d22ce38
BLAKE2b-256 6b17f1318ac658261510d09184449ee1c672570872af6c718bbdcca2551742fa

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e27f17d0a9ee0b07a068aca3a13e401c8024e99ae9199a392c077eb78807e1ec
MD5 3f2438729a80c2bfe71fb08e382f960f
BLAKE2b-256 39d6cbb6901a8bb81c537d12cf4ee8553c36f76048a904e961635f609bec1626

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cf8bf34d532ac7a431521ff208ad7da3a5c4950a0fe4c8af5b92625b00f36f23
MD5 11fc8d5c96e2a657a88ac4c5c7f44bcf
BLAKE2b-256 ae03472be3f71325823ab03e2bbd4697d544acbec1a2bb2c6a04cb47403a7b0c

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9ffded05d2de60018355e8312a36abd1aa395e7b398d9bef5d8dd3e6f531e8ad
MD5 40a5b3ec18e514be8a0b7241cb080994
BLAKE2b-256 79486730564e6294bfe69f16aae7fdc63d49887f61070a732659c7bbec04a820

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2f44a3e195e05909d73efe91d2039f3889f7f580091913e89b3deae13334d788
MD5 808e0a3e2d2753323c86bce4a11b060c
BLAKE2b-256 1b9ebbf1e52f0548c50152d6181b601f4be503efd18ee7fd0ba21921a58129bd

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 df758ecc772ae6714b641a8cd0bb5f912870d35080d7f6756cb017b66cdf240a
MD5 9ae43a50b0cec5dd6eece87ab982717c
BLAKE2b-256 8915105493045c1e8dfaac2a2ca95d1a6020ae49c7feb3a9b5a5c5fb50c47b2e

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.0-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 261.9 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 6132b6807ff850b9a33cc05b9829453e61628408388f2666a0aca756f4b8b9e3
MD5 121667e4bf8a1d7d0c271a96e7b749ef
BLAKE2b-256 08aaa96a760e5d5335986a75d4eea12a7d0f123d078d9d58e65a555fd7868c86

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b2773af2135035f447e036fa03b95f91c64097a9021ef7418382ba799dcaa1ea
MD5 5607893d66a6c668a80cd209935f18d2
BLAKE2b-256 7812c07a7c7cf99eae598ab313fc7d472f9f548b2bd985dbba18f078119428bc

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 881a50aec4ab4be763629c0e61f051e1c1ff148915498ee5e2f0175ada2c68b6
MD5 4b3b535df9810079b8dc77ff3f137d68
BLAKE2b-256 3e98dc9267536a60424cde67bdd4167a90a935d280db12f59e5950a453e7fd31

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 583be17da6a3fedbd8ffcd4ff7f1f52b5de81044cba5d7b6d5687526d4dd329d
MD5 8941a3b9577f818de0bd82ed18abc8f6
BLAKE2b-256 1c468dce2e46647b8d46f31b1495151712fc8d8c34d21764950b1f004484ded7

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e645cdebfe670f9cc26906ca07b5f804d21d9ece3b0bb6ff68fee294d8f9ed44
MD5 56ec686a79a51eef13ce9e3579c400b0
BLAKE2b-256 3a156ec1183f02219804183c98ef393d0ca5de261b28d4631a9813c647c6fe0f

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5fcaa68d7a8e5cc0f8d27950f08122929d3ab1dfc2eaaa90b0767da104f8dbc5
MD5 c92d8af4595f40dab2ff009192d710c0
BLAKE2b-256 7d9b8f7dfc0cbd434b86206d256cb2ed00698676eed4a52a26ae419f80604410

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d9df6003c73802fe8325b35423d9372a5f246974483e272805cae44992c4e258
MD5 e9160fe83c8652b00b42fca101b2ba15
BLAKE2b-256 d7f7067b691655a03effbdbba354f891374d027923f9f4a86eac07a239383162

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 194ea321fe5d81fc19543413ea15e65c4bea17ea90f6153c94eac34f18198a97
MD5 aea79f608c8a91f604c7d2929e09089f
BLAKE2b-256 30dbf8a5d01d56b6f1022175d1c9620581d3c4749da27d8c54d1a9ca3110c74c

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3155961255d8f66f046a45841c12b50aaa15d95a5cb10fdcaee18c406acbc579
MD5 41d45b3605f7bfa1d53fbc4acfdf4600
BLAKE2b-256 4516772327c80526dff678b3c552b73c78ae9265c1a75fe745ef1f438a49e87a

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 262.4 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 f1c95ddd7897602c039993557be0d0dd724c06baad32efb012b5423889a1e747
MD5 fdbd2d85b2152eb209d5c3da64cdb26c
BLAKE2b-256 805335bbd201844a4e4ff1168d986a5cb65077799c50b92d82b851d9c67726da

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 272.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5471a3f4f0bae4ab7d8cdd04cb04bf65f5fdb821cb4487cf507118c12d7a0a67
MD5 2e196c28005416e029f49a1e59ec79cf
BLAKE2b-256 7c1414e325fd073fbb03ffa70412b3eb52991d931d5d5a9f1e5b66daf8057d1a

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c5d0486b1fa6b8529907e7892b771bfe9697ca05c22514218883be23aa8193e5
MD5 29f16d224a2b78b9030a065ee0594b1f
BLAKE2b-256 ab38d84533db80711db4b2f2f1aed8ab68127fae8e04e5688b8273c000f26483

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 6f0be5330f31796f00b26d35ec5cad9dfb490b88ee4f1013b09127d2c225533f
MD5 ac9c382a2a7f004bf426997ba12552f8
BLAKE2b-256 eb35f18c33d0cfc30fcd2d9fb8160ef53c20f0f62f582401071591b372685d4a

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7971c2c8a649e7c538e50a095028ff1a2e1dd1ba7447ef9c5ef5fc2ffda27e7f
MD5 b3f98b05af3ee74bae3747e1db73ad2c
BLAKE2b-256 9bcc0316f1ce0e06781bcf0fec232698d418ee637ac1e02fce5c4e2142ea88e5

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cec767667cf8e40668bbc4ba0ed7dada1e578c22dc6eeb971728fe79ce5af325
MD5 409f1086211cf4d71dfa4d3c5b49e5cc
BLAKE2b-256 1f30d5a8e1fb8f3621130026c2e412bc17ca302d79ba03e524b23ed4b6087a1c

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 06da168d6f5dcb33f5f6bd7cd0120a5f7422c832690c99a9fa64432f5e3e44d0
MD5 fab83e85c5c6524a45ed3c253798a73d
BLAKE2b-256 7f04173eee4bb28786873a7297ea0faf7b420296a1cf5b8b65be68fdbf94aead

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9ae773f9188d38fbf5073fb65ac4372e5a9a1219bb3ac16c78601ab71b9e578
MD5 613289c23dce255d39d59c21187762f6
BLAKE2b-256 acdbb7d3db6ad3b25eacbeeccdd38264badf772e05645f63452d49f63bc94845

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5cbdff79a1e4183269986aeacfbebc29d20dd0d1fd1d3b8cc3ce60c04a00e5ad
MD5 60e3011505fda6eb20a1ea8b7007f35b
BLAKE2b-256 70ea5421caaaed9e4417da82d70c5b51fb9cbdcc263fba75ce4fb2d4c7766153

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 277.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 baf14552a1162837d7306a75e47b73ba000e818362dca1675d769fd80bfc7c12
MD5 849bdd0551814ac3c04f4e3f3813035d
BLAKE2b-256 a903ae9d216bb4e761d6723a1bad30c1969f91eb4e20048985a09ceb1fe87f6b

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1e82ec365bcd803e343a1fbf6d6de75a45d2fd34aa7bc8c55cc0cc437d6b9f3f
MD5 1b581f0d2caf71c45978a68300ffbe50
BLAKE2b-256 7763422733ef55bf36ba00f67be64031f5414680d25ea616eb4378cdd99f2f8a

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2ae15171e80eace97e257ca62f9f51e960c49484ee10297d68329a8c58331403
MD5 6082fd205a24529a68fe53c6953d4c79
BLAKE2b-256 6f0efc069d16d6523d1aa36e7b1a24c5f6e59b93d06a9dfb447fb4d62fb2962e

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f215c791573fb0db606c128f6cfea5fb5d61581fe8361989f0153cb0663579c6
MD5 1611e019d546fb13d698ae9407230f4c
BLAKE2b-256 7c6d502a2ccd388eb01579c3dbf04290c5447466cf2b1b12ad4d991632a4159b

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c0119ca5b2c989b6bbc2b057efa448cba7590f080951148416e68b415f815ad3
MD5 e15f668f7db3ee8f820d0184ef7fdc62
BLAKE2b-256 2b39c080e963a96c4cd12534921475f1e3e182902faa3da48bf02f38c60cfc1b

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2564dc88a8795574620be9de4c9a33d8e787d5554fe12749a03458a707d6f39f
MD5 0b3fdccc8775ed682f7793cdec1dc613
BLAKE2b-256 172a7bb856298734bd87d3c30ccbd64be9e1d421865ddc31043c494fd00d476c

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 35c4bdda76934aff049a158c0a860e71bd03ac05fc532d506f0ea4b35e0f29eb
MD5 5b017448ae32bdc62b4ca0b456c5c537
BLAKE2b-256 deaff03c28d671c5484b5bdaf9e40b74edebd3a12cfa1c79396bc18bd0093ddb

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 da998ea4b472c3f662bf16eeb2aca92d66d503774a9f9f4a16d8826c984a5139
MD5 cae2596737b475461a124d4a7db4df18
BLAKE2b-256 5d46ef7b32ec2214cd7df743715ac9378d765923f91b362347b3e67617d5d0c6

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4582888f8135da6cec8bccb320e8405ee7ebe97fe982c14027cad9f43778c0fa
MD5 689ac41ea7012503a7e8020117ed6415
BLAKE2b-256 6c7ca9460aba04222a562cc963c299d77e01e8894d3aa1359b9160e94b967653

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c10bbefbd493bd800b6e59b8a7a17975bd3dce8c57c5ff6e156c784b98492811
MD5 48cd9e6e39f23f0b82ad909fbbc047ad
BLAKE2b-256 b0a4f0cd8c0067f7b5ef154347bd065ae51909fce23644b6e9bcb4995951882d

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 04198968cfa6b5c888a42c76538f86614fd970b4d4f124ecd3fc8042460d02c4
MD5 c80e59943abcbeab18e461d9e1ea5a8e
BLAKE2b-256 e5b596462937273ffc60c289c3a2240ff57751fae742a06d06977e52b90293f0

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7bfdffd68ee70b779139805abd3a079f5269d8a180305088ea8caf989fb5dd10
MD5 10bb94aabfeb03c1c8fff742746044d3
BLAKE2b-256 587fa0fa8383d4a324f7b0c05457f7362119554dce8a21b564e3d876ceb83534

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 95549ac622707ec19f0ee606c0c3d854c6b40bff3f89972805df2e520524ccaf
MD5 0419d7603b842ea46ec0c113b8b6f416
BLAKE2b-256 f1d990f55c927fa58e0271da1dae091195beb5245adcad84836c56480b424444

See more details on using hashes here.

File details

Details for the file usearch-2.11.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2a86bc022e4b911a770370cf3635cf93261f2cbd5f1a366e0acb867dafb2411d
MD5 949cd4442094e470e5e08116cc83208c
BLAKE2b-256 c0f03be3d1a80f4c03d859df0eeae3ae944331f90f41f3fc3b60221187832964

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page