Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Filtering ⁵ ban-lists any predicates composable
Required dependencies ⁶ BLAS, OpenMP - light-weight
Bindings ⁷ SWIG Native low-latency
Python binding size ⁸ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ With USearch the index can be combined with arbitrary external containers, like Bloom filters or third-party databases, to filter out irrelevant keys during index traversal. ⁶ Lack of obligatory dependencies makes USearch much more portable. ⁷ Native bindings introduce lower call latencies than more straightforward approaches. ⁸ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

$ pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Metrics

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Filtering and Predicate Functions

Sometimes you may want to cross-reference search-results against some external database or filter them based on some criteria. In most engines, you'd have to manually perform paging requests, successively filtering the results. In USearch you can simply pass a predicate function to the search method, which will be applied directly during graph traversal. In Rust that would look like this:

let is_odd = |key: Key| key % 2 == 1;
let query = vec![0.2, 0.1, 0.2, 0.1, 0.3];
let results = index.filtered_search(&query, 10, is_odd).unwrap();
assert!(
    results.keys.iter().all(|&key| key % 2 == 1),
    "All keys must be odd"
);

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

USearch Semantic Image Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications... on iOS?

USearch Maps with SwiftUI

With Objective-C and Swift iOS bindings, USearch can be easily used in mobile applications. The SwiftVectorSearch project illustrates how to build a dynamic, real-time search system on iOS. In this example, we use 2-dimensional vectors—encoded as latitude and longitude—to find the closest Points of Interest (POIs) on a map. The search is based on the Haversine distance metric but can easily be extended to support high-dimensional vectors.

Integrations

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.11.2},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.11.2-cp312-cp312-win_arm64.whl (265.0 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.11.2-cp312-cp312-win_amd64.whl (280.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.11.2-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.11.2-cp312-cp312-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.11.2-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.11.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.2-cp312-cp312-macosx_11_0_arm64.whl (400.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.11.2-cp312-cp312-macosx_10_9_x86_64.whl (418.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.11.2-cp312-cp312-macosx_10_9_universal2.whl (783.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.2-cp311-cp311-win_arm64.whl (263.5 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.11.2-cp311-cp311-win_amd64.whl (278.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.11.2-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.11.2-cp311-cp311-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.11.2-cp311-cp311-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.11.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.2-cp311-cp311-macosx_11_0_arm64.whl (401.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.11.2-cp311-cp311-macosx_10_9_x86_64.whl (415.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.11.2-cp311-cp311-macosx_10_9_universal2.whl (781.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.2-cp310-cp310-win_arm64.whl (262.4 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.11.2-cp310-cp310-win_amd64.whl (277.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.11.2-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.11.2-cp310-cp310-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.11.2-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.11.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.2-cp310-cp310-macosx_11_0_arm64.whl (399.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.11.2-cp310-cp310-macosx_10_9_x86_64.whl (414.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.11.2-cp310-cp310-macosx_10_9_universal2.whl (777.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.2-cp39-cp39-win_arm64.whl (263.0 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.11.2-cp39-cp39-win_amd64.whl (273.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.11.2-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.11.2-cp39-cp39-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.11.2-cp39-cp39-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.11.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.2-cp39-cp39-macosx_11_0_arm64.whl (399.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.11.2-cp39-cp39-macosx_10_9_x86_64.whl (414.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.11.2-cp39-cp39-macosx_10_9_universal2.whl (778.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.2-cp38-cp38-win_amd64.whl (278.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.11.2-cp38-cp38-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.11.2-cp38-cp38-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.11.2-cp38-cp38-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.11.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.2-cp38-cp38-macosx_11_0_arm64.whl (399.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.11.2-cp38-cp38-macosx_10_9_x86_64.whl (414.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.11.2-cp38-cp38-macosx_10_9_universal2.whl (777.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.2-cp37-cp37m-win_amd64.whl (278.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.11.2-cp37-cp37m-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.11.2-cp37-cp37m-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.11.2-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.11.2-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.2-cp37-cp37m-macosx_10_9_x86_64.whl (408.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.11.2-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.2-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 265.0 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.2-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 1025e671b70d11ad7a8757a5623b19deaa3167a16eeca8c6bdf50c03d54a2cc5
MD5 7b4c9730f9ef6043aae3b9569f169389
BLAKE2b-256 2eea0e397a756bfc6996268a40750b65df274a8674b40ac1595f434a644a88df

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 280.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4a00c212c5fb291c637b3733c1359c74e15f08feb9ce0a0e214b6c7c3e0ea8bf
MD5 12453678eb4dd5788efae1a3ce178f79
BLAKE2b-256 e216b9c0e5f17347721d4af71bc2a3df191c743588c52a3560bca9473790684c

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e2ec5addc62ff10dbbc38a7683dd0109c97e0de14d851752cc4a6a9fdf23e370
MD5 0ad101c9fa689b64c7c741dafe89b55d
BLAKE2b-256 9693694b9b5040c1952199be53d8be39916c0c188755bbff1e7ba8fadab50154

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d3f4348cf7fd2eebb4e21f3c8da1355eadde19f9c7cc5822a4dcec461cee9ad4
MD5 de1ec9263244800d0f916d16a6aaefad
BLAKE2b-256 4e5308fdb43623a907c2784da38cf83da3efde3f6e7afecb5d973286188a180a

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c91737a0bc0c52c64ffb43ea9e95e79cc581ffacd5f34bc76576fed29288f2ab
MD5 9e6d1ccef877173a7d08caa9d6733478
BLAKE2b-256 f4708f896d539b9ae751c5f0493c96ed2d53b3bfe4c503e43909d988a3b3cafd

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9c7b38b43e23ec274b88a2d2cab2769aac9d09e7af640e69eee41c4ddd9d0c50
MD5 dc0f1b0e1a6e97ffe87c98f1b2bf8d51
BLAKE2b-256 b24e8ba3b3f638b0357726e7bff70c149397c116062abd76524c6ec89ad7d776

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ce065e6ecd8948cca37504aeb7c26b2f74573d35da9ef824e96c45154c1f4360
MD5 642f81a23e38b99513c6960ed1c1f2a7
BLAKE2b-256 b0b87899f6a2b7cbc1924e7752e66f0a9e09e3607fda0f68fd77ecee689f14d1

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1de09dc5bc429191048c577e3acc9f1f4275b6e823fc0ed1bb79680ecdf8a4d3
MD5 58b3f824e8107bc3b8b4d1c4fb5f332c
BLAKE2b-256 7b7828aa6138742dbde4158227694976851fef3cc1e55e22aedd02f41c677248

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f9605585ae90ea37e551e6a899c8241eb95734acd58f4b84f80d218c6e363cf0
MD5 3d802a7c2623b5bec8bd09da9ff30dd3
BLAKE2b-256 84b27ccd6387f3f20609eea6f43b3e9b4bf0cf6a51afbb58c22c50490a9b2461

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.2-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 263.5 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.2-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 7513765201c5aa0739c8e0c25f9006892313053ed71b41da83bfbf56ea82ef9a
MD5 17085f3d60ded3b602349d16a718a468
BLAKE2b-256 c83f4b6b1ca4137d853b9a015c4dd67584062318c38bade352ebd9c7c7af2bc1

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 26a1136ea60ca6b61c330251a2fe313d7807845014363cdae751b0ef2bcdb44e
MD5 82d9cea0b3c0747790ca127e9c18a1b3
BLAKE2b-256 60b7196fc876edf02942064ecb23fc13ff84b600ca45e504b07c90d91685301e

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3eab6ba11b71c94ae1a1e10d246c3323a4b5c3bb95e400bac1fca9db0cbb90d9
MD5 dec62f72688158718ccef40d3e014a69
BLAKE2b-256 d366e0e26cacefee33d9d3a6748741b8b83bfbf2569cb80eeeed9b29a298b73f

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7aa6e4a31466fdf860c329bfe08df5a91f39c6ae0ed6127dae1c2be95c2622ba
MD5 6c4dbe480a2cee13a3f9377a6abc4391
BLAKE2b-256 49b79861600e915090395769cbb13b27091eb9d3b8141fada67484a64637662d

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 183dd90552b2f37aa9c4d6aa3fc464f1960c3a8b8c1092ce6e945334fdcc4154
MD5 d6921ce385232fe76785473e9407f4d7
BLAKE2b-256 5fb35c9edffb640020f7e02f110e7c3ead827d9bb9a5c92360a4b2e20f5fc3ca

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 903ba7b1784522c83c436108bfa4d08634307d698a34a6d2e44f858ca710e4af
MD5 7073ee5b43f3152f17999769ba603f1b
BLAKE2b-256 c07dd938647823bfad6b534d41b752ac50b96f9daa2ba3060cea1e4cc0f9948a

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e7a44cf137d680a5f49c60c82626b5d31d51bb73192832980cb9fa2e3f6cd0b
MD5 872aadbf688ce2e00b9afa6cd0cbc5e8
BLAKE2b-256 38cccb9812d28ed92b9dc1c225dcb50295dd119d6667411ab8bda9719b39da2a

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5ee2108074253f28b395b63722b43077086ecfc6c67cbd0856f23b3ae0537a0
MD5 b5935ff8f034caafff4051355885cf12
BLAKE2b-256 f89d228161eb43db0c9f6f64eea1eba35caf25c162f6e1f23e1dec227447fe62

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a2ef9a1151096c20d8a48724df3cfaa03e5adc64440b185808eaa3035d0641c1
MD5 1a3cfab88d0a85098e301873ee111b9e
BLAKE2b-256 e7de40b490f86cba9b03e5855c38645cf6c920065af7aedc59f9da6e92e43431

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.2-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 262.4 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.2-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 f14fd0658f7993c41070e285aa1377738cd55f780f92b0cafa66992b4cb3d95d
MD5 4ac6e138188ca23517b8a1768f67b63b
BLAKE2b-256 0e3d7cd22bda22ebc60e8d679dc9c851374b362c0d247ea8c0de8dd08a1c3c41

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 19f86de32f7be717cf6350b1ffed9d6764b6f124dbf6f8c6287868f0572e4a81
MD5 1ec31e9ab47fb5cfd32bf0c000338ee9
BLAKE2b-256 0a754669b9d558d014ba8441f83f67ec3026fdd794270955561f6bcc2b1c6a80

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 079c4f98cd06b7f175b1a517baef1a7559ae3b482e1a7ef499f5a5cc66761dd9
MD5 9f439520f223a62eb14f8931f1077844
BLAKE2b-256 e73c574ee5c5e1dd50fcc7901156cbd5ec0702c9d055c6003c3f50ea92af006e

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5fe945c53391d04ac15c96c8c2867f458f47a91b8f68497d87a9579d14564afb
MD5 3021bf8a300b5e5e5a1f4b9d344e3732
BLAKE2b-256 3a61d02dbe2e0fccf5dfb6154783ea8a4cf075f932971b4f1d5906ea29cb5202

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0de34a4fe0cacd60a5d65394b5af9226b61dea01d550bbdd6e4727e2d5bf18d2
MD5 c0ff6d20a9f309de7b99a3ee35fd1708
BLAKE2b-256 555bc904f62e5f2730a910e29f68f71b9c33b1fa1a6207b7d934774e6b86945d

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e6763dbd719471ebd784a7db1725facb11873f460cba284bed7d343f447d26f0
MD5 3a7a45846c8b13c6b5cac84bc03e5842
BLAKE2b-256 7888342cda9ac19725cf0c7fde252c8348424ff94a1ac3178a491592c7c5fb48

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8402aece78dd6279daf1567554af940eb20d25652ebdeb9c3a5b083c97a6ad2a
MD5 30d3fb2fb0c3ede520055a651f5dd361
BLAKE2b-256 2fb5eb9d4f6f4d719f0584dcfcebb1b7354fd377efbb1a0ba39fccda7da32318

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 845aaa54d6c13d067ad09384e608e1c911d59696942f431acb1499d534644a89
MD5 ee1d595a4587f6d1a42952a519013fd5
BLAKE2b-256 a156d66bb66c97ec6a815d20967764bf2490c044ede394f3fd8fe8525cbb15ad

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e8bb394a903edba25456426d055e5c6ac9d087383f9b92f9aae776584b46c242
MD5 966c8301b82841c392e9498f64d5b3e0
BLAKE2b-256 55c58b2c7850f061983892fb1b1d7194d7e2d366c109d5ffaa737ea28f6afc8f

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.2-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 263.0 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.2-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 8f40ae9558a1acb3fd3a03fbd188ff18ee0065e91e3c32cf5f9c606917945d7e
MD5 480330fc5255cb4f465058890ba2e480
BLAKE2b-256 f35258e4956e5160cce88925f05dd02b64b0b68aa09f05b5d25b957771ccd9c5

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d4ac052f59497d1b8afac0def17ce449ec9b6ac4d0e53a00bda2a05da928fc68
MD5 44e427408995f2ee7100e47114ab0942
BLAKE2b-256 51b3ffa7164dab1281bb6e458ae1373aefc33f0b90cca2deb2248863b9624b7f

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 428529368c988fa7e16e2fe36eb2b2e1b841512ffb15a5f8bd0d71ef15e66b75
MD5 d4bbd7ee63bd9b4e10294a1ddca2500f
BLAKE2b-256 4e88ec991634d117c3d0a34e2b45f4482d4d51d2e10396975c11a6f97944c179

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 09c10a3e1c37ae1489498191b5fc2ddde3477fcb6208cb0df94c3c9d0fda89e1
MD5 cbdbb2c2c3feaf1a78552c2ed9a27621
BLAKE2b-256 77aaa35b7b7a273d316cd6513e610ec6f45fc9314cef671d0789a8d395c798f7

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9324a51728007c66b23f14c7e9edd92090783397cadc195d68c5581200233a13
MD5 7aea80c6ae47c1c740257ff3fb07d106
BLAKE2b-256 047f9313e00a030c48a01972551fb18af4c55dc27d7c82b46d62764c071d1662

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2fd1c560fe22c9d171ddff9c1104488d949ce0204c25cb05bca7d569d47e2d19
MD5 d2a4a66683dd8aa9f2cc613b55d6e552
BLAKE2b-256 7f40a52fbcad3a3b05a050b3307834d022c54645fdb79475740ddbf25466c38d

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 676c2552ac5399983ea109caffde83a19fc1edb5a5b7226aa83c7efd4ac55c82
MD5 1bcd6700ca0f2ce2049bf4ee97a677a6
BLAKE2b-256 1ca6e7463369477ecd39728cfdaa611a61dd508ece97965bae3644941c20fc6f

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3108664be5063f1cd60366737089a8628e268657b30caf0f26977dc59b97db51
MD5 5b849516774ce31b65b849248b7c4005
BLAKE2b-256 ad98f9c71bf451238f3cab0e2ee34f83ffcc1f6923c21f6b3f2865057b460948

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d0c9279383227a6fdebe7d475db7405de99481e41f3d34da09b4fceed08d5576
MD5 addba825d745816da18efc603b0ad0db
BLAKE2b-256 7d05a35cdbfa9eb5fc7d5b8ae26c750d6689f7d1a8826c8c3a61bd2b0ebe0fd9

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 278.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 eef12acaf6449d385b0b137b853d2d5165b78a916169e5efa81dccc97d33b092
MD5 dcbdcd9b9a5a1e84464e6831df263322
BLAKE2b-256 04281bec8d04a08208f77ab66f8f7f11097f6baa7e6a4177e36ce5ac267b4e2b

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bcf6df8f3a23cd304783924594a5ed9a494d8e6f08a6cbcc615a4d3baa837e9f
MD5 42a6fc9950024b742537551603e6f49c
BLAKE2b-256 022d07c6b5fa45bc86c35a6fed7d571d3c837aeb18198ab5ba1020a2b46605fa

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 82b693c43b1d8cdc7163b3a962ec5cdfe7848fbd3de14926a31168479a873d76
MD5 89976300dd86535ea83a3c802f41586d
BLAKE2b-256 858ab9607c47d5eadfb54d4365dd55cd36caaa6db0e8e4109fd4e11f5296783d

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 142e873f480671e38157a41669ada41e67f313f75fa1fcb559033fc38e96f817
MD5 be67d84e160bf69573fc2b609612a736
BLAKE2b-256 c577f23602d95fc222c02fa9b7cd969216bb6d8c0164afea73911498f5cb038b

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b93d015f0c9a07c5e271acc4cdbf79a0b4b8c9af063fb236f1ccc04660833116
MD5 86da12bcf309f28f506cc285ff01335f
BLAKE2b-256 d72b01501f0f61bcd1dd950505e21de746fef10bbe3158acdf8a30472f0a7bd0

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 de4ae67b447a65b971cac074d043ed8a06c2c0640966974f8ee1e2db24b3556c
MD5 b6d91277f18d67781f6f51a1840011b9
BLAKE2b-256 27df78632b5a6ea1e1d7f6e905ccae1372a3c1124cc9c1a6384df6c5263aa6c4

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b301985b9195f8ccdbf4f4640924bbc81100d5a8b842a70eaad0e3024c7b806c
MD5 d24d4b5672d56e1ec0523e9978e112da
BLAKE2b-256 93cc831445e3c5fd648dc322ea2d8279163334fa9cd919c74095a8e95bef5e0d

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 41e5eb2e09495ad61d37874a0d668b6992dc9ec2a85b2cbed0402e0821ec98c5
MD5 3163d6866e013837dddd60448757e2fa
BLAKE2b-256 d2b539de6031be0f208bba0d402bab434e1af2ae6364c51d0ecf75dadceb793b

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 de40687fea92cb5781cd64adc28bfcd45f9ec281ad0507ba1306c036eb270915
MD5 956f73e6090ecc4e800ff828e410307c
BLAKE2b-256 6f8003a25ccebfd4025409aead48c919d523220ac2bcddef581be19197593688

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a7d8e6e883e9a1ecc8ae3a2c5ed14a5685671243d6dac616246a2b5169ef208f
MD5 39504b8780bacbde3cb11575ba810014
BLAKE2b-256 ce99e42488750ff6cf1795dc4e45413a427ea204d2a0c21e7c058e65966a8afa

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 90493b617c50099499a9ce70ad84366aa54cd71a1367376d567568cd8b716ec7
MD5 7e2838c2b9b9dd26c952d669045eb265
BLAKE2b-256 6519b129251f4c8a36febca30f385f331b97a9b08720842a97acdce80ad76d9f

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9e9b1f85390bb31ef77074f0581c5f53eec642fc5dbdb6d6960a8b0b3424c39e
MD5 a3370616d670bb6ce05318af4fa78351
BLAKE2b-256 d235b87a646c1a4d95bd04d26651ed342a725d4cbea59d1ee6807614f8433972

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9e6c016fb42a511a2479bfe0d70528352f04c9bdefe4af01fe8e8b81e357f0d5
MD5 9f23827f745729504a3828dfd337be49
BLAKE2b-256 d44a405819b70867d40e146e2f430d2683c0819df6ac499704283e731b3e27d6

See more details on using hashes here.

File details

Details for the file usearch-2.11.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2f4655c3ef2f142f2c37a90617c2b449420efc2f0be51d6c9d97193f1df5ac2b
MD5 b9d2596a5dba36db96fc8317f8559638
BLAKE2b-256 b998418e3628e8c8b91efc41e4229428f2a37e41896c189cc067ecfec1538e44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page