Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Filtering ⁵ ban-lists any predicates composable
Required dependencies ⁶ BLAS, OpenMP - light-weight
Bindings ⁷ SWIG Native low-latency
Python binding size ⁸ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ With USearch the index can be combined with arbitrary external containers, like Bloom filters or third-party databases, to filter out irrelevant keys during index traversal. ⁶ Lack of obligatory dependencies makes USearch much more portable. ⁷ Native bindings introduce lower call latencies than more straightforward approaches. ⁸ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

$ pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Metrics

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Filtering and Predicate Functions

Sometimes you may want to cross-reference search-results against some external database or filter them based on some criteria. In most engines, you'd have to manually perform paging requests, successively filtering the results. In USearch you can simply pass a predicate function to the search method, which will be applied directly during graph traversal. In Rust that would look like this:

let is_odd = |key: Key| key % 2 == 1;
let query = vec![0.2, 0.1, 0.2, 0.1, 0.3];
let results = index.filtered_search(&query, 10, is_odd).unwrap();
assert!(
    results.keys.iter().all(|&key| key % 2 == 1),
    "All keys must be odd"
);

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

USearch Semantic Image Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications... on iOS?

USearch Maps with SwiftUI

With Objective-C and Swift iOS bindings, USearch can be easily used in mobile applications. The SwiftVectorSearch project illustrates how to build a dynamic, real-time search system on iOS. In this example, we use 2-dimensional vectors—encoded as latitude and longitude—to find the closest Points of Interest (POIs) on a map. The search is based on the Haversine distance metric but can easily be extended to support high-dimensional vectors.

Integrations

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.11.5},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.11.5-cp312-cp312-win_arm64.whl (264.8 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.11.5-cp312-cp312-win_amd64.whl (280.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.11.5-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.11.5-cp312-cp312-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.11.5-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.11.5-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.5-cp312-cp312-macosx_11_0_arm64.whl (399.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.11.5-cp312-cp312-macosx_10_9_x86_64.whl (417.9 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.11.5-cp312-cp312-macosx_10_9_universal2.whl (782.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.5-cp311-cp311-win_arm64.whl (263.5 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.11.5-cp311-cp311-win_amd64.whl (278.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.11.5-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.11.5-cp311-cp311-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.11.5-cp311-cp311-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.11.5-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.5-cp311-cp311-macosx_11_0_arm64.whl (401.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.11.5-cp311-cp311-macosx_10_9_x86_64.whl (415.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.11.5-cp311-cp311-macosx_10_9_universal2.whl (781.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.5-cp310-cp310-win_arm64.whl (262.4 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.11.5-cp310-cp310-win_amd64.whl (277.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.11.5-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.11.5-cp310-cp310-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.11.5-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.11.5-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.5-cp310-cp310-macosx_11_0_arm64.whl (399.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.11.5-cp310-cp310-macosx_10_9_x86_64.whl (414.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.11.5-cp310-cp310-macosx_10_9_universal2.whl (776.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.5-cp39-cp39-win_arm64.whl (262.9 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.11.5-cp39-cp39-win_amd64.whl (273.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.11.5-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.11.5-cp39-cp39-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.11.5-cp39-cp39-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.11.5-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.5-cp39-cp39-macosx_11_0_arm64.whl (399.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.11.5-cp39-cp39-macosx_10_9_x86_64.whl (414.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.11.5-cp39-cp39-macosx_10_9_universal2.whl (777.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.5-cp38-cp38-win_amd64.whl (278.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.11.5-cp38-cp38-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.11.5-cp38-cp38-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.11.5-cp38-cp38-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.11.5-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.5-cp38-cp38-macosx_11_0_arm64.whl (399.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.11.5-cp38-cp38-macosx_10_9_x86_64.whl (414.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.11.5-cp38-cp38-macosx_10_9_universal2.whl (776.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.5-cp37-cp37m-win_amd64.whl (278.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.11.5-cp37-cp37m-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.11.5-cp37-cp37m-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.11.5-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.11.5-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.5-cp37-cp37m-macosx_10_9_x86_64.whl (408.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.11.5-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.5-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 264.8 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.5-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 0edfcf164a82d01300ae72cc267243eeddc109a019fc9a21fcf40dff17e43dd6
MD5 39c91e19f70d1a9c44e635ad931d9a95
BLAKE2b-256 f04c55bdbd27e5c472637b9d83e9e5386bf1ec3a602ddef8d11cbd377cccd9c4

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.5-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 280.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2035be76f0a28ae10a711a96ec3863300ddd95256b685cfbaaa51500269070c3
MD5 6e844c7a8ab40870ee1fb155de597ca3
BLAKE2b-256 9ef6b9a057bfc3812420b746589825a686a34303ee09933ae55beb1cc66b3eaf

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 54f54f7e5c414fedb2379e4c16c33d457fe2bb39f6c7dac22e73845adb10fd93
MD5 dd97bbca0feae1fe8ddf3a774ca25551
BLAKE2b-256 db6b3a04f0caeef702340a25599e78618dcf83df0a78567a0f133707bf8e7a8b

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 6e2b81894ee97604286f64db0a038cc714e0059f1426e70304dd07eb517bf10d
MD5 ec4590cf1187e2930ecf03895ad78ac2
BLAKE2b-256 3a1b02050d06527a9630fde272cef426387f038299db99ab1b5c98bf7650633d

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9d23c1688f76cbdc7051ec2b584ed689401d292838078216ce6f78ca4f28fc61
MD5 e448a590b5ea76d4b622611c44e609c4
BLAKE2b-256 5ae8f3256537424a1f46fd02b6427c1f6146d220f5aebc4d5dce1c583a7d6399

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7892cd1f2417f5b04e3618f59b549a2af7dd8c65b51e92495222a76301f7b57b
MD5 921d7d5aedc4a12d42e742c413488c4d
BLAKE2b-256 d6293fcc69923150e1c3bf9dea87befaab15de37d8dd622280438301ff417d11

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc6f04ee5ba70e979548ee205a1c2f8488a401b9ec0a8a0bb53e736cd3e987fb
MD5 c3837e1fb4d8fe1e31452eb91efb416d
BLAKE2b-256 16c4bf98939a84fdfb559935078e752869d9c09f18811dd05e30c99afa7e10ef

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca01ab315eb6b2d36ff3cb32b74114c2dfd6eab97b548ab3392ad9c8b74de9c3
MD5 8e6842fac694e42792b08bae35a95d12
BLAKE2b-256 e793fecc9d95dcce5f42ae52fd0f2f37b4dfc0c14f1b1f4eb4b67bc4c67f0d74

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cc2a4cd393d2dcaef954d90c8a2534f7f3c3c3aea4e5936e30b3a90038b92240
MD5 dace890bf850be766452ce9df356de1a
BLAKE2b-256 273472349c883fe765e5c37164666ef3543f3ebf58ad4a87c0f491aea03d6572

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.5-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 263.5 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.5-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 0fead1585b0c82fb57f3b870508370e2acc2eebb122a94456e07a299e08a2b25
MD5 d3c54ad398288c9005b55809cfdc1c1e
BLAKE2b-256 6f2a33a7cf0879b06550adeaba355c807c31dd8ac79536a3e381e1020923188b

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 57dff1fbed878ccba4bd0c4843026770e3b8291cbe64b540c8655b2dc505e88b
MD5 30fba326851a074fb2f25a8e9a9575c2
BLAKE2b-256 af0cab5f12f525ffda7f09c24926877ecf184d6b85edb4f6212e03dde3a7d4b1

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e693ce0aeec7c8b430af0f68e3bb593258ca6f9d5f3cb38637e6a361d9377048
MD5 4510c9a46088ab70aba8c3469468cce6
BLAKE2b-256 3a3d03d31da28b2cb82a1e5325b00afeecda33918ebffe862e8c5672f792b710

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 15c9881d1e0c6cd1c30c03cd4229e9a2925dbe896f12f46d1ba6c0f76cef14f8
MD5 02587ece9c505b6b8f44b3ceff825d38
BLAKE2b-256 2c29f645dbe8f858f4d365764fe2f680432118c59f2edd0801885a1cb4689524

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 aceef3ff3cde744960028f2a8239acfe8d56c5ba9d4c3bd3d4ada56b15839363
MD5 aed1cbcd920f875109a20d435b06d800
BLAKE2b-256 2b4368dbdf67cb8b3731beb752df9fe27f36321adec42f919ce077ab61ea6c9c

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c2b00856db19d4f653479c1d48385ed71a4dad9d4869d39351456b7d5ca6ad1b
MD5 d762cb11913a7b28f5c27ae7b112633b
BLAKE2b-256 f390fcb370175b8f25122a4e37ff1976e1c07f77ad9a12e75623ec4e3d1badc3

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a983b22442ba3b8822ea4764bf431151b92db99d4a6330438897b8f616613f52
MD5 8c9ac7406f070f6d54fbc880358843db
BLAKE2b-256 ef688f0125a2ee2662dedffa4fc1eca084b3cad28bd4046c4cc8d053d08faebf

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 daf02cb1c65160bae5fc4b907d92d9019db61d38fae15216a7624af0eeddcebd
MD5 e38aa146aae4c55ecee89851acd15d7d
BLAKE2b-256 aec537f3b9d0e1ff5837682b11a62ace3968ca86ac5a350ed9db6c9a311abc87

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 072a1ae788a7f3144db481433f26f6041673de23b30b05a2fa5422d6140b6383
MD5 ee7e1a864181bb456db0c74e655dc0f8
BLAKE2b-256 01882b171fc714a1d5ac6209ea02f21c6b945c4726a90c129f400c75bb5e0765

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.5-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 262.4 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.5-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 b256072f4b9f6e90ddfb4288a4dc2a70e73103aabfc3eb182574bb13e866fb7f
MD5 088f79fc111202cb9d0d273134401d4b
BLAKE2b-256 4e51d377dfa944e41966d80915862d20c87ddca743a55e9f4b3ba3fe111c15bb

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c763ef34a3f88efa6e09ecd8cf08d9021f09b2a9a1af99489af0113b1389d846
MD5 b1df4e25ca3d2040010695acb42ab370
BLAKE2b-256 2a9d5680d89f04940857fb07f86b7d3fba438571767bbc4c0549a7f843eaa458

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3726aef8f295d85419cf854f87aead93fe89d72d390fe3025f00ee26e1b16ecc
MD5 755ca2f53f38fc3222486de7d9282f59
BLAKE2b-256 21b9badfa0e7c0fd69f8b8ead9d63720e2c1db0c14e7fd1d1aaaf81adeb93ea7

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 58bab73f95e938579ed62ca3c84d6088afa8db668159d259baabdc963bd2292a
MD5 4b38749124edbd7df9c4e7f7cfd36bb3
BLAKE2b-256 24b58cc7acb8a96d4b74a1c75b7d07391c720124d2349a538365c7035fde036a

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d2e6113173e7569ad8a3447ea3eae3422e5de55c92e1f1631425b2e9619c200a
MD5 745b7ff4feb288f4808455caf9b75da6
BLAKE2b-256 91b06b3a99ce32ece0748d83110d94c3b914a539982d36ba94808dccc4fb6ae1

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ed64d0c6855482a4e8aac25eadf5b1a0e95c004662706e1ab684e5573851e4cb
MD5 1278a3735c0d66e1022a68af9fb2cec7
BLAKE2b-256 d9f877647635183b964267a5110aa651733c0387998cbde6532cb4ff526d45a5

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f0c7f9a7d77b6ba1d69bc3cf7fd042b4f3ec5d07ce69c0ed8235aa102bd7515d
MD5 538b6d190452387f93c64b520644d1d5
BLAKE2b-256 6af349094a4680b65d7648d7ce93188ceb3cf88ac4b9b690b599a18158bfcd81

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cfaeeb23d4824f4199325fbafac968db5c478df453b5842e6fa6ac81d865590c
MD5 e9f5c33f98082ea75782212eed23a210
BLAKE2b-256 0c4017f3ad399f791e81315b5b5fd66976e16ce797406ef8056b54f807afd288

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4363775e3612e5664319649ebf48a33db134699803138bb5efe0de2af6726fa4
MD5 7183cea4bc8cc29258d311f4cce92c9a
BLAKE2b-256 a588238460f7991daa4fa40e3797740ead63cb0b6febfd81f6946fc625446638

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.5-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 262.9 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.5-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 5bfdc0b8d92f00d92ec0e8fd6792271ddea1ff1977b50732c3a70303d643b105
MD5 a6dddb009ca65f6053ca99175c5f17b4
BLAKE2b-256 354ab186e6d91adc308ec1ebb01c35b5151f8e1d0ba48c862392d638e2339dd3

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 22ee79f5b10fb8db5fd0adf1606edd825c0cc1e05c73524cfaebb99410909047
MD5 e4b70faee6c2a560ef5ade7a9e4eeed1
BLAKE2b-256 1d766c0d396be97810a36dae469abd1165c6857bfdc69827d26e127bff39639a

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d29d206b51e63e5015a6cc6325d2a0c65e21dd8f9a1331190fe23bc01caf0b04
MD5 c5c4dcbb2e03442f29c4179700140b6e
BLAKE2b-256 66be1644694bd05c570e33bc4adc6be55eefeea08d2ddf8ecb9c83d2d70a8a7e

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a172c338701981de03989571b81844dcbe8a62d661449d73893b32c1e64d3313
MD5 d878980910a094293c8627e959eba983
BLAKE2b-256 28c7624ca86f0336bef2f50620e0e85a4db20ca7bc8b41b0a565754ad439927b

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4e1091dcb3f882d9deaabd25a80c3a7bf2b27da926bee5e79c81305621d217b3
MD5 f516bcd04efbebd7e203e5019075a7e2
BLAKE2b-256 45b99fec117454b77bcfdbbaf63edf945240c0c158bd3634f39921cbf3fcc117

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f9cf5b49e4d7580b70659259ac33376839c6990747facd1ffebe61c545bac46d
MD5 1f7dfdeba456717a48660f0de0d7ac62
BLAKE2b-256 c655e406ff254626d5f71fbcb85d57a5e75a8600c3314d7019b5bce365dfe1e0

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4ad5dc75cbe12832bde6e8c3e5c70c1cefe7aa77e97224c5cb331468b4da5f40
MD5 a6f4fb9c7be1860a089dfcab7d6efa06
BLAKE2b-256 6a71868f51a759d910f0efcccce42a76dbaa49ac169cda71a22d432d9994b140

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9a6f9dfb0f299a7aec11cc349e10f2ced98d47a3681a2892f57ffd6a0e95f8a9
MD5 9bb16b513dadbabdb65526107a007971
BLAKE2b-256 a3cff07d67faf1786c150f483754358245744b55542f914d40991dc0d1f5c9f9

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 484715240d7d0d31df21d2123523729c4e84b20000c0238bda793c059fcf0974
MD5 f43147b10653be9e47381098ba91f238
BLAKE2b-256 645743c7b3349df3ea2ce968787b203a796fb5c2c70e06c71413b091f67f21f9

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 278.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a1fd55cddee7f119199c601c7fe0e44376318683f502dafbac4e664c216506be
MD5 1829e9669972f9aafed3bf386bc06aa5
BLAKE2b-256 0f4675604e3bdbe4937dd411cbc661ccb8338b3dccc1a14265b0cfe12caf81cb

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ab8a304e25ffde774dff5887635bca538c4327bee7b35048c11becc485296703
MD5 c0516ee7e4f702fdb12daed05a2be66d
BLAKE2b-256 647a71b8989a13b701858896944def2ecce32e63a9c4531f996241f24afa6cfb

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e684bcebe13e2410653b66c60ef88d8ad6225b9716ffa5ac462a6c954d57aed1
MD5 c0108d15052c97119f1ee551e26c477f
BLAKE2b-256 3dfc88d4cd354bd42143981fd27ca83f12e685948cf52e5a1dfe1e19790a40a6

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 99e94990d8929f44d7bccc0cff812608088eba3f0ad05d9efdac1cc71390e4e8
MD5 ab9e5e3bcffe6a152c1bd1b57ddb7253
BLAKE2b-256 e1e833157adec9cccc0b3c863cd6961dd052922e7881edb1821d7c2be5e98083

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a36557844eb173fbe5ec6624e5789af8e120a35a8cc8908dcacd78613111a789
MD5 2700e509c067ec2fa6e7bbc305863884
BLAKE2b-256 bca2c533b5d40d185d78db8c1b70074165527ed94a5f15d86bc096e9b0ef808f

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2f7e499735f2f86d7d010fc6dcaafc8ce24edd0c7559b7e1785591f500f306a4
MD5 930833f5a05670d0f8224e8695596263
BLAKE2b-256 ee5f54999b2d90fa0dba308ff02fdaef0b0d449a6169a4a87426a0e1ef8090e1

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e73a44755fb42e42533e8031acc5ac0806c3fdb4eda2f1ad932acd2be31b107
MD5 c53e0aeb40c317cd2b90a0153a2056dd
BLAKE2b-256 386c8529b2fdfca94aa598b6d4f3f5b6c0aa4ad42a1e6ede060318e156b5b1bf

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b416a01f295169b0c7eeeb4c5e58fcd13557e18ce65295a30d2d4a1ea376ec39
MD5 c0b01197e4de31539b235cc1ae8b02f7
BLAKE2b-256 3bcd47074ad4b91cf927b72d8dec96d5faa7e506075d41a098a8620bcccf9d3e

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6730a9517307e7592971f84230d208d6fc8afe2435eb1084a2287e510a578432
MD5 5661efdfbbfb733ee2774df9fcefddf6
BLAKE2b-256 b769aaeebdb790e36fc78e6521c4da81c9fa1d964ecdbc1f993b8a5fea924b8d

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 37e60d652a22e811f9a540fe1d5d31fae6061c1b43f17ef9d03f7fbd70f50fe2
MD5 bf3af113ba5900538097a9bf1bc9a361
BLAKE2b-256 8b1276e83f11adc695869ac4e020f39098eb39b5681a0d4fc2cbd9eebc6d1321

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 df9a7a5ed86f4d60377a26394503d77bacb543f589e55fc5302cf279b1eafdaf
MD5 adab708ffbd6676f1356832ba23e105e
BLAKE2b-256 4e4cf499e8ad1b3d1884584c3f5ed539ba1ccdd5e54ea86beb4a61f1372b1994

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dff6a537dc222fa3bda1b817de976002d13a4d5664ee8210b4aad981fc482bca
MD5 aa09bc636213123d84cc33f30c1c1e7f
BLAKE2b-256 fe915846c8daa79ef92e4a40b42f321eb7d8ddb7a309843fcd13573984337237

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bca0579d01b46c6264a530fb7f250dafb15d489ea77dbfb19d814b90baa67540
MD5 f90420f387a39b042ee1c3403f2c7401
BLAKE2b-256 fe32135a2bbfc7e5fb66051d464e6470f6c4f23a325a9ac2a716c5e58501255e

See more details on using hashes here.

File details

Details for the file usearch-2.11.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5440e2b411e7b6197e822e3c9366cdb5b4417fe07b92f10d4c6cab5ee4d9d2d9
MD5 2cce2825d7a0859a268cb377e4c85143
BLAKE2b-256 3de8c27c82078efc384523fefc905ad56fd9a8cc686904c5fe85411b033f7f86

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page