Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Filtering ⁵ ban-lists any predicates composable
Required dependencies ⁶ BLAS, OpenMP - light-weight
Bindings ⁷ SWIG Native low-latency
Python binding size ⁸ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ With USearch the index can be combined with arbitrary external containers, like Bloom filters or third-party databases, to filter out irrelevant keys during index traversal. ⁶ Lack of obligatory dependencies makes USearch much more portable. ⁷ Native bindings introduce lower call latencies than more straightforward approaches. ⁸ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

$ pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Metrics

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Filtering and Predicate Functions

Sometimes you may want to cross-reference search-results against some external database or filter them based on some criteria. In most engines, you'd have to manually perform paging requests, successively filtering the results. In USearch you can simply pass a predicate function to the search method, which will be applied directly during graph traversal. In Rust that would look like this:

let is_odd = |key: Key| key % 2 == 1;
let query = vec![0.2, 0.1, 0.2, 0.1, 0.3];
let results = index.filtered_search(&query, 10, is_odd).unwrap();
assert!(
    results.keys.iter().all(|&key| key % 2 == 1),
    "All keys must be odd"
);

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

USearch Semantic Image Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications... on iOS?

USearch Maps with SwiftUI

With Objective-C and Swift iOS bindings, USearch can be easily used in mobile applications. The SwiftVectorSearch project illustrates how to build a dynamic, real-time search system on iOS. In this example, we use 2-dimensional vectors—encoded as latitude and longitude—to find the closest Points of Interest (POIs) on a map. The search is based on the Haversine distance metric but can easily be extended to support high-dimensional vectors.

Integrations

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.11.6},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.11.6-cp312-cp312-win_arm64.whl (264.8 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.11.6-cp312-cp312-win_amd64.whl (280.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.11.6-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.11.6-cp312-cp312-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.11.6-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.11.6-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.6-cp312-cp312-macosx_11_0_arm64.whl (399.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.11.6-cp312-cp312-macosx_10_9_x86_64.whl (417.9 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.11.6-cp312-cp312-macosx_10_9_universal2.whl (782.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.6-cp311-cp311-win_arm64.whl (263.5 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.11.6-cp311-cp311-win_amd64.whl (278.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.11.6-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.11.6-cp311-cp311-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.11.6-cp311-cp311-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.11.6-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.6-cp311-cp311-macosx_11_0_arm64.whl (401.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.11.6-cp311-cp311-macosx_10_9_x86_64.whl (415.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.11.6-cp311-cp311-macosx_10_9_universal2.whl (781.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.6-cp310-cp310-win_arm64.whl (262.4 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.11.6-cp310-cp310-win_amd64.whl (277.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.11.6-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.11.6-cp310-cp310-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.11.6-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.11.6-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.6-cp310-cp310-macosx_11_0_arm64.whl (399.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.11.6-cp310-cp310-macosx_10_9_x86_64.whl (414.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.11.6-cp310-cp310-macosx_10_9_universal2.whl (777.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.6-cp39-cp39-win_arm64.whl (262.9 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.11.6-cp39-cp39-win_amd64.whl (273.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.11.6-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.11.6-cp39-cp39-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.11.6-cp39-cp39-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.11.6-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.6-cp39-cp39-macosx_11_0_arm64.whl (399.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.11.6-cp39-cp39-macosx_10_9_x86_64.whl (414.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.11.6-cp39-cp39-macosx_10_9_universal2.whl (777.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.6-cp38-cp38-win_amd64.whl (278.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.11.6-cp38-cp38-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.11.6-cp38-cp38-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.11.6-cp38-cp38-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.11.6-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.6-cp38-cp38-macosx_11_0_arm64.whl (399.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.11.6-cp38-cp38-macosx_10_9_x86_64.whl (414.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.11.6-cp38-cp38-macosx_10_9_universal2.whl (776.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.6-cp37-cp37m-win_amd64.whl (278.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.11.6-cp37-cp37m-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.11.6-cp37-cp37m-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.11.6-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.11.6-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.6-cp37-cp37m-macosx_10_9_x86_64.whl (408.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.11.6-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.6-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 264.8 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.6-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 168bef11c46147961966a952fba7769d457e41db062bc0776ec6c7ab11289ddf
MD5 91acfaffb13df95ea633e3f0343b46a0
BLAKE2b-256 4d35735172cb8953213ad075b4f2bb8aedbad0869b9d31bf5c389a18761a171a

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.6-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 280.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 053fbf2098522da310b1a15f61146bbbae5eea3bfc612949967e00a63a35e9cd
MD5 400e2c668c93e94b865d6730cdf09591
BLAKE2b-256 862684a1c6e9d26bd458c3e96f511f492637bfa03edab83199067f7821d62449

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7c591450e7ce1007ac2c69b4b15e9b953783524a4e497ed0c8baf6a86f6b35a8
MD5 db286ceda0e3bf82e4ca0e1b9a2c02f4
BLAKE2b-256 9c569f49f19daae02aa904c943bf144b063d5add7c47be3465da8c8558c38f39

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7b3aafb8b54a4d14d3bd7a90650fd16e4d220390304da97380d23dc624c1e31a
MD5 1bebaa690e4e1e313aca76f9458f7fcd
BLAKE2b-256 1b5e3b3882729cdfe48a2901332b530208177ed933bd7f75af1cbe7bf77acbcb

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c89c74f0ccb4d3fd1d3042ff05edaa2580fcfd5baf2e8b1720a9c8750ff3d8c6
MD5 5f72b866f646d388a5cad80a41c1d428
BLAKE2b-256 40d05a52756c87e0a296c9f650db2ad2f67fe6e17d2e9f291a1b170618130304

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e302721a893e33c9f3b98b9e6b0d03ebc193c59a326a3ad13bbba2344cd3a465
MD5 6f9417571146614c8fc59c71b583bf5f
BLAKE2b-256 30e670eae713d13aa4a04a486934837ec6bcc21f11ca985c64bf0d3078e3861a

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7f6a63deaca411554e2cb46da5be9234c559a35ebc5478c7e5f9893077302caa
MD5 351ddb85b8d613581ee27988712996f7
BLAKE2b-256 a11fb4ff571f73ee02b9c0e8fe8363dfc0e169a069f8f265a081c60041d0acd8

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9fe94dc9df058b0281a4f05240a416ac3b5f8608080a34013547003b957e71d9
MD5 6939a2b0067f3d44e6b609a4156ec257
BLAKE2b-256 b0b38848ebf6953db47a32d84fd08d2c5984f6bc1af6d30acb5700c2c41eb56d

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dde46e5691850f3f142dedf7d14b33a849a9a858b71d01040653a2cd1299eb5e
MD5 a56fa524e0dc115eca1747ffeb8ed58a
BLAKE2b-256 0e569e68f7f9a085de168a87e230030862581e225b915337ee738f303cc28b98

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.6-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 263.5 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.6-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 8cf1ee0468d5655d30a3700b945e471c1c37f13a1b68b013e4e9d083d042c19d
MD5 8a3fe31293a9b25f0423975b156018ee
BLAKE2b-256 1a97e41af4089ea7a008df62452ce47840e0f45ad09d3791dfb40d86673b59f2

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 611ebd2cc193816e4ebbae74d535a9d5bb47077596562b32ba89768806b4fe5a
MD5 4f522cf7cd95abbc507fbaf883169959
BLAKE2b-256 08106eac656f3a51a4ab568e9f49e0edeb5bbfbed790b5e537b88bc898a040df

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b4d4731fe47ae92a40b2f1cd268e1e429dfff969304cb1008ea7f79a5cf35d78
MD5 1a451a9fbceba2b07be759f30f12676f
BLAKE2b-256 be845152d995fc23f03ec0c488845f4ab01529f2c993c2c0e94fd22105b28db6

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3f297f46e567d5d976fb64d08c47870111550f57347dc1dc4a88db52d0e10be7
MD5 93b891e3c1f957ba9db475e645b8b32d
BLAKE2b-256 5491cc4ef2f7b3245575d26a143f46cea2ae41d49f0bc515db698a3966a35276

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2fe1b403d6e874fc2b163daa93512dfad7ba5e14823f4fcd73544922f72f0032
MD5 421d8d5cccc7e5d2c00da79baa208184
BLAKE2b-256 e34c0bfc7d0e8ddd608d9d2a162c4ef045a56a956a2e43d3141b5e9743fa0089

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e9a88f805429fbbd0ba85cb85ac68a46c64d72bc14c5f8852af23e02cf0d5532
MD5 696d11ab9c01e286655f2b59f28539da
BLAKE2b-256 01944135fadf07e2935141787dcc87996dcdb1d9f9ea59cfa80f27f3f11e0819

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f3ecd714d2b360cee264a95d9ad2b25591487b6a706094002deb02f8bbe1322
MD5 06514c4bd7be874a2e0dcef998a4fb42
BLAKE2b-256 13dc9404780c9bee068d012a5f642c309a63b9ddaac27617e918702660d5b8f0

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e96d9e37129c4cc63e30d879aa06f14aa59a789862f2794ad14682ac7397882
MD5 41e7fcda926af231d2657610ddfff5c9
BLAKE2b-256 0c57989f9dd0fe59ca30b4a524f8841e7b811e8e80b9259d685ac7edc8a86c05

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3e69d66b189061c8019c40b8dda4c9bbc7044986ad5c478fd9134724dff1e4da
MD5 c02b10157fed313397b6351c00605e08
BLAKE2b-256 4bf309decc4e5c3068017866a4ff54efc385c1226b521ee3c75c67c26ca90319

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.6-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 262.4 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.6-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 3087a38da0145e4f3b6249bbeea931dd0d20b6fedfeae2793fe44f3574898ac9
MD5 cd401a144fe1abb02e5a1dfd6ee65f8e
BLAKE2b-256 caa7c42ae9ea57d8a3d5d8c07ac6ae5c58e05b12be68764d502d28c1396e03e8

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 523a24f506dca3e9c8ce33ad603edb72bfbe90f4ba01735025dd0096c4db06b8
MD5 ced5c172d276f35be7929a1c751e9ca2
BLAKE2b-256 29696885fb9e0d961693bc4ea2ca36664881131d643fcf78c44185fe8529cad3

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 06253389b7e8e37e51ea18eef727ed0e6bdbbb8aa0dc7d290e7f2d69667b8de6
MD5 e96b36089735923973940c32f7239448
BLAKE2b-256 2a720fdd5281b81e1a70b37b16d7a572a396382df63a54d9d83a6534a27294f8

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7ca994b72a888028aac352bfb8cc38f7fefad2d673b8aab8193a2aa0eed55eba
MD5 f228c89936dca3d0dd913d74a31433cc
BLAKE2b-256 81c98ee0e63814413cf2b7ecbc2c48767f9a057d0648710cf96227dc69c88273

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 283f07f6b180ee53e2219d77e3451754e239f05eaeed4e6567d9af883adb0b07
MD5 7975b66a7799238e4b38e70f68142916
BLAKE2b-256 8b1fc74b60a3edfe379b3900356e0cb76671a1f388157f7ea68fc1eef4b7b77c

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6af37f38b2027fc8325c1052b892e217e79b4a8ad62607acc463067458a158a9
MD5 147b4dcf21bf1464d20972b8473fcb6c
BLAKE2b-256 cc8982bd00b8e4eb3b97a93751d5bafd3e7f270a761e42e3c6b6d04f3e0d5798

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 97c8310e3aaf8916e3a9ba1ebcd87c4c81d7a9cdb98ce32f1edb79c9756376a7
MD5 06e554c3cae629256d2d752a69f564da
BLAKE2b-256 7702afa67d69cb607dbf230feb2cbd0853eef45f9c4c6bd961cfe2d77a3d2f27

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 293c55ae84c2e9f18b6a6af75109f6b9ef67e75613521743b746511184b40705
MD5 f9a3bb3b778e670ce71bbd9be4e54a1b
BLAKE2b-256 123a4ffc6011ac5495cea1bbaeb92a08c85a1c9af9b0a318d3489253b6791263

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 72ff1434f4afbc981ae07bf3e52f8f5a3fe12fd78b035287e41fbd14a05cfb27
MD5 63dc33641ed6b9d5d4d95a6cbb9172de
BLAKE2b-256 2adad790093bfbad410e56df79a84f0842abbc976295f35cc72e8c7ff9fa1ff9

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.6-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 262.9 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.6-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 62cb1141071b7abe989698cdae3b9fac42a018113ff63824bd09831f67e89229
MD5 a3f3ebc53872ea691f46416b7011f740
BLAKE2b-256 216beead85234e2dd3e162983945252ad3566ee3889ddcf1325a068d4f77fd25

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 42bd4f8f203877dd68b70aa3950444935eef79cf01ef7e643c8aeea613bce6f2
MD5 6da85c0b38be64f970ae0669052115e3
BLAKE2b-256 369e6caefa6c0bf2cac9e606631ab07c082ed4f4188243c58dc0c5e24fea0bb7

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 cb0f5d85ca9a20fd388d33b18c278bd5729207c5e69f3e5ffbf81775c526a87d
MD5 0a27774c18299d1f54f51bd67aa2d15d
BLAKE2b-256 98ce93225057dd6397f0df1880d272c1c9dccc21bf499719aba69c6d675b7b43

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 cc7737bb72f4a4867cba1c2d0e8f2e99d04c87a639020cff202ce43841a0a541
MD5 92f690936222c2ad186c8df853e47a16
BLAKE2b-256 210a7257ed878e68f003947e9f5c6382054130757fc32f51a7a1d086187382b1

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7b52fe5f3a5c501539b9a53c3e912974ff5d21d260cd8b2b8feb884253972114
MD5 8b79fc8beb4110bdb54ffd65bf12c921
BLAKE2b-256 90479f54840f2216bf4806aa08f1adf6d04952088265921b7093d8fd366968dd

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ae9242e5f916b150491ee3c6b63463c47b4ceb79c4ec52e528630c226fe593e3
MD5 a5dca76bc1efc690815c5c1327866fd8
BLAKE2b-256 9d47d774ecab8da6bb26f102f15eb8c8b49e7a70eda3515027641fc2f3b983e1

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 73c5ef655b599287396c97d9669e7153daad0a09066d6518fbb7ded31ca016bb
MD5 dfc71d167aa3825f29096eff528526ad
BLAKE2b-256 5ca64d5a9fec9a277cd4f154bb759e847efe41cecf5a5ac19912ecf185a14753

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d065002118a589dde2b8d2f64371f3928f35552215d8ca52a73144f24ef112e
MD5 0ae2a615bd45977efea1a8279d436069
BLAKE2b-256 03e8646723c5de6cecb356481fc96345c62c7d14a0e5e2a46d707ced92cf1f2a

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c9699406a826f532c028e30e9601b0072a3248f35b7a1bc86615ee0af4b4fc65
MD5 bc88ad00ab06196bd86d4bdca634710c
BLAKE2b-256 7b42258cf8fdac7a5489ea42cdbfa395ad3847379ea977f3da5a006bb2616cb4

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 278.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bff8fb8a8f5e85759889e44846e522aef727bead34e7f87ad6342850e7a2ef50
MD5 69fae6b5eff0ef611459f4a1874f3452
BLAKE2b-256 e3f517a6121c6d9c5eb77e7df46698554b3799b56bc95e892ca401596954c7c9

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 906c64bdf7d58fa044ca1e3d3701adca1a106fd1d4dc179de8ad94ea8e2dd0e5
MD5 8acfacb55edccf153def1f5cde3d1032
BLAKE2b-256 a2987d6d936ef031c42294f75e376f9a98d2c69677b0a2bb4ac83d7c270d9d52

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8e06c705a44e039c371caf3d64ac5186768b5b1350b17e368db8c0001ad846c3
MD5 bfb7bc90f04d60a2d8fbe341fa155cb1
BLAKE2b-256 f5e6027834da681307abc6576c6a03166ddf847e1030c847a468796b859d2358

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b2cf8503326edf06d0350d396dc41ad6e7ad705342ea606f7a6bda7b9423db66
MD5 79d8e1c58dc071781a88d7e06b7091dd
BLAKE2b-256 b3e43023de3ee6cb73d59eccce3b595512a5390b7b0b99679db65969809bf081

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4f67ebb219f46c23be70a85abbb0c3f9b44e6e925fa4251e2facc630b27d077b
MD5 1517d53f03b454814b5e532217b91a67
BLAKE2b-256 9e192ebb84ff9abb9504415d500e77c0733d8f5ad56c597bc989f7183961d685

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 657ff9ded35d1565bdfdf07de975c265d5405a00477b3a754c76762fefbc92b8
MD5 d29c03b66a64b861601d2ed0835cbc51
BLAKE2b-256 2fa99124de9116be4f806dc08a7c99ba2de361e972dd6151076f46646444758f

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3726ba2ba7808a9769931fa3c644804ad4a2d1acb442b8a132cb3134a23f289e
MD5 1bfcb382fb5a5cb8959cedb403a0cd0d
BLAKE2b-256 511213a2d647e4ae2da15872310e94a46fb013a9a894f00ef5d9f4d2c38b8413

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 46c944137cb1a88c90154cf9435c775577817bc701bc2a15e838f068db769d98
MD5 b1b2e65ef1a87481eb25a60b96bfc28c
BLAKE2b-256 e397f5312610e459fc3d68ad96422de89a502ab4bf938443b825b2b05b464275

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 af280679f783e45034caa1e395edbc6f66c586035f80af37cc9dece7b5c1bc21
MD5 92cd10a94baf709fcf72c5e771c4d5f4
BLAKE2b-256 ad105ff0195a3432af6241928e7999a23abcb2f5179f29f608f3437af0b5b904

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 39f2d5dca80814c2632da9daab3450d445edbf0bad16e9fae3fbf6f768837999
MD5 161585d6bebceee7bcdf1420f5d2721d
BLAKE2b-256 d66f1c7062c7f2ee7a84de75d94912fd570a411563d2178a6b1331954fb787b2

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d8a8f41b80f1eacc1af6e3e1e2556ff5cdba641b295da1c81a6612ebc265e826
MD5 9690fa61b14a768eaf87c82c3f8d005e
BLAKE2b-256 38fb0a55028a886e117810886f744f5f13457eb1da7ec411109a4227313b3eb8

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3fad16b6ee72e05e2ca07a6774cc50353a5f3ae5c2b81a7a53c9bf0019ec75e3
MD5 2eb49320b17589edf3b21baab8e403e4
BLAKE2b-256 e32241834914ff8b41e089074d6e457cbe7cf5cb66d07df090ab9bffea33e1ef

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 088bf9744e84a4c25fc6aa8cb7d91212fc7207f7efd442e06cc15a51df66eb1f
MD5 434346d5ce16bbf6cdc2e89dee163515
BLAKE2b-256 89e5472b6e857f1aa8a0d708d9f422c582b1e0867b586230a13907c851d901fa

See more details on using hashes here.

File details

Details for the file usearch-2.11.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dcc561137d8f6aa652c8a3540d7e303f9e74ddee6bb1edf4390273a5730e6695
MD5 96f36105178000f8e95ac21b375572b1
BLAKE2b-256 e2dbdaa4c517a1ce798cc063cfc56d901aff7da21ea761fb17cb5eea493d4d3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page