Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Filtering ⁵ ban-lists any predicates composable
Required dependencies ⁶ BLAS, OpenMP - light-weight
Bindings ⁷ SWIG Native low-latency
Python binding size ⁸ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ With USearch the index can be combined with arbitrary external containers, like Bloom filters or third-party databases, to filter out irrelevant keys during index traversal. ⁶ Lack of obligatory dependencies makes USearch much more portable. ⁷ Native bindings introduce lower call latencies than more straightforward approaches. ⁸ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

# pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Metrics

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Filtering and Predicate Functions

Sometimes you may want to cross-reference search-results against some external database or filter them based on some criteria. In most engines, you'd have to manually perform paging requests, successively filtering the results. In USearch you can simply pass a predicate function to the search method, which will be applied directly during graph traversal. In Rust that would look like this:

let is_odd = |key: Key| key % 2 == 1;
let query = vec![0.2, 0.1, 0.2, 0.1, 0.3];
let results = index.filtered_search(&query, 10, is_odd).unwrap();
assert!(
    results.keys.iter().all(|&key| key % 2 == 1),
    "All keys must be odd"
);

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

USearch Semantic Image Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications... on iOS?

USearch Maps with SwiftUI

With Objective-C and Swift iOS bindings, USearch can be easily used in mobile applications. The SwiftSemanticSearch project illustrates how to build a dynamic, real-time search system on iOS. In this example, we use 2-dimensional vectors—encoded as latitude and longitude—to find the closest Points of Interest (POIs) on a map. The search is based on the Haversine distance metric but can easily be extended to support high-dimensional vectors.

Integrations

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.12.0},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.12.0-cp312-cp312-win_arm64.whl (264.9 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.12.0-cp312-cp312-win_amd64.whl (280.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.12.0-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.12.0-cp312-cp312-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.12.0-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.12.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.12.0-cp312-cp312-macosx_11_0_arm64.whl (370.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.12.0-cp312-cp312-macosx_10_9_x86_64.whl (383.9 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.12.0-cp312-cp312-macosx_10_9_universal2.whl (716.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.12.0-cp311-cp311-win_arm64.whl (263.7 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.12.0-cp311-cp311-win_amd64.whl (278.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.12.0-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.12.0-cp311-cp311-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.12.0-cp311-cp311-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.12.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.12.0-cp311-cp311-macosx_11_0_arm64.whl (369.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.12.0-cp311-cp311-macosx_10_9_x86_64.whl (380.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.12.0-cp311-cp311-macosx_10_9_universal2.whl (714.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.12.0-cp310-cp310-win_arm64.whl (262.5 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.12.0-cp310-cp310-win_amd64.whl (277.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.12.0-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.12.0-cp310-cp310-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.12.0-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.12.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.12.0-cp310-cp310-macosx_11_0_arm64.whl (368.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.12.0-cp310-cp310-macosx_10_9_x86_64.whl (379.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.12.0-cp310-cp310-macosx_10_9_universal2.whl (712.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.12.0-cp39-cp39-win_arm64.whl (262.9 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.12.0-cp39-cp39-win_amd64.whl (273.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.12.0-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.12.0-cp39-cp39-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.12.0-cp39-cp39-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.12.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.12.0-cp39-cp39-macosx_11_0_arm64.whl (368.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.12.0-cp39-cp39-macosx_10_9_x86_64.whl (379.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.12.0-cp39-cp39-macosx_10_9_universal2.whl (712.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.12.0-cp38-cp38-win_amd64.whl (278.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.12.0-cp38-cp38-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.12.0-cp38-cp38-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.12.0-cp38-cp38-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.12.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.12.0-cp38-cp38-macosx_11_0_arm64.whl (368.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.12.0-cp38-cp38-macosx_10_9_x86_64.whl (379.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.12.0-cp38-cp38-macosx_10_9_universal2.whl (712.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.12.0-cp37-cp37m-win_amd64.whl (278.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.12.0-cp37-cp37m-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.12.0-cp37-cp37m-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.12.0-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.12.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.12.0-cp37-cp37m-macosx_10_9_x86_64.whl (377.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.12.0-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.12.0-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 264.9 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.12.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 f3ee8bf67606479d5f453dd2bbdb331a1681e5f21cc5329109d04c83661b20d1
MD5 d6426adc7820e762dadd471f68324e5d
BLAKE2b-256 e22b8e30b0fda4d1c640b15597052db811bd02dc759b65427e9fa3f8170476f2

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.12.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 280.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.12.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 542469e287208cdd9b29c192de726d3bca7cb070dfe772a7b76b3e50ce4dbbf4
MD5 129ff5db713bb2a38bd059eade0d5198
BLAKE2b-256 cbf80c626bc4ba140d26c55cb5791b23a0711cadcd0efc325e17b2acac5a2e4e

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d0290c15fc4b441ef148feb398c1d94d6f4db5dbd4f51b8a77d37938656c3c85
MD5 7797b85befde40f60c9b25fc798b8879
BLAKE2b-256 9cae61144ad9259cefc2f9cfd90d67182e9236a85c8b2f5c22356b84480bf94a

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f0e8b79b2dc4a322037eb904a240e7628e9d801a9d0d431e50a3b534c08c91a6
MD5 2c0bb00df68b6c51c265c35737bb84d2
BLAKE2b-256 b3276fcccbfccab9891714bc31225b59de443e120a9d4d2574862296693fbd64

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 48de7f35c1c7d259c35f6d1779ab773811126feec363c8ada5c0efa7cfe0e54b
MD5 95debeba9ac98e7fa730a76399e55718
BLAKE2b-256 2a96bfc9291a6a03002b7bf0c68ef60af033f2b139fb31c8f2a73e51ab58a66b

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b20bb4905a21efff7f391306d33a2ffc5bef647cf710c0b562b27b2c1dbe4b51
MD5 8f0ee64bd2fdbd64be93fc8c0d59b9ec
BLAKE2b-256 6c87d37fff545836bd5e9935f6cb341875b0f467c6b085616f867cc2d59b6c03

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a0f2165b6427ed240f4277655ab754a67d3ed47bcbf2ea717c80e4ead095503a
MD5 07da94ff54156e27ff84ce5dc9459545
BLAKE2b-256 1e29c49b1df1d30e7c30f969e08bcaabff7bb3b19703a15223a91c894bdf72c6

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ebc5ad46be372b98ef4f667a8cd3df47647de88dc0ee5435cf94195e148e8202
MD5 a4c32e2ba3a90e19baf62eacd9719a34
BLAKE2b-256 ba07ce1d4b509bf3e3289a18f7a41a4bf2c71fc7deed1b4fb7dc736bc4f69046

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ac653eb025f75b59a75ef3b7da58c0a1139aca9d0d8c8af2554511ddb1c371e6
MD5 835bc0eae83c4bc177a7e9ce82b0e17d
BLAKE2b-256 04346caf81c1c8917c87b4e1ab0ec0fb465a2446ff0e2325b0540e3c47eaa2a1

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.12.0-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 263.7 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.12.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 58f027c2eeeabd75e235cbad2c479b1eea8a751453d5b2580955cdedaec20de1
MD5 78995813d665d72e86575c501e337d97
BLAKE2b-256 48b64e94c572704c24ea7e942cc9fb81cd3e35eab6b154d3954d87ac8d143d27

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.12.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.12.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 522627dc95764ab70122db838a66807034183c1a6d26dcd5ed38fdd9e7d24beb
MD5 b9ba7bc6d6b53df9c185ef49f6ef747e
BLAKE2b-256 5c5f05d18972df00b3bdadfea38d444a2f73409e5abb25e3808cbd78c5072e4e

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 117bcebdab14057b9ac228a346af5dff65cfe0a780e1398e999ac20def6488e3
MD5 e7b0d67c7319a3f0a75aa4a52b723f8d
BLAKE2b-256 d2dcfe377030fc3fc925a2d42a756c339cceb9e427bdc6f46db3f291802e5696

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3fd47c8ef364f54a4737d64e905c5b0031ec8fbecd399cd41d2945819b67a269
MD5 5bce8535eaec027942379ac51766d47f
BLAKE2b-256 a743eeaad836ec810c229e70b1f16907f3606657c7e619694a86bf824dc3b62f

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3ffe8e866d08fc7fc92148e81d96862893e23c260a45b73e81e19140870d0480
MD5 c71014eebbd93c7c3555bb91ed6cb0d5
BLAKE2b-256 cdff2c852f9373b42bc0b8674fa1c625ff62007a3a363893f7fcf63cd72cd07f

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3ed2f229d2d80be82a09bd4b580c30e3a89228cfd295a3d9faa07b5c02a4aa10
MD5 9ce282ce14c360d5d25c2e5ab01bfb87
BLAKE2b-256 64ff505a36224040b8e09eb2c8555c729471ddd57db416e15ff5bea6035c661f

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1bb80d3a6a16adad876088d18eadb9a50b40a4331e0f76a0bbbccd7d577d8016
MD5 d12ba7542f30c4c0861e1bbde87a20fb
BLAKE2b-256 0f630f9152a43b645123cae0229533c9bb4a5ba01c2250033249c282442828c4

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e91962e35738772ad7f6d15ca5cb9cb6b425a71a7fc9c7e495ce3783742a7df7
MD5 663887512ef39952443f35dbc313c7c8
BLAKE2b-256 59f097909d2de1ce165640f759f0897ab6b6e1d8f97d73c96b69405e06e6327e

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4af0d62027425d1d02ef29ee5072501d8395ec6532079aa7834d11b8eaf5972f
MD5 8500ae42f97fbec7e9311adb808ff887
BLAKE2b-256 baa490a9a7230ce92e2109d239a522023aa9126ee67e0efca24a43b780e9b051

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.12.0-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 262.5 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.12.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 a5edbaef570b084ec1db9d9669329c860bd4a72128efd5867eb93dd2bdc6d23c
MD5 4068a1f56f4840124dfea2eca228b3d4
BLAKE2b-256 d12f86079a855ceea553722a1ec5a44677de473c512d509873f543011bbc4914

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.12.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.12.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 50380710ad6eb730ab1927b919e206c765fe2eb869444ceba80dc7a81a5fd656
MD5 8b94dfc99a5cb89c5a92802c175d03b8
BLAKE2b-256 219804ad9a18eef5e8e5ca1938339fbd3a83679f605fe46ba7bf8b235bb4e0bc

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 88367f82ef931b98a8c9b1759dff69ac63dc8ef759ee73d2e7f5fdedca02f21b
MD5 79af520c58138a7dd1419127782a6265
BLAKE2b-256 1484456ea5db5cb4af9d5842dfc3093fa7de0fd932c9700056fa7b8a211f79da

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c24c0046d17a36f636f7a96f8b812dd7a40ef8b0cbec12fb8fdf2fa5be4a37cc
MD5 1433521ba776a98965c2fe449fc726ea
BLAKE2b-256 49368c5140d586b7228461df5a232c6546f7e4e8f1d83f10ed4e0f45509fae67

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a7e01373688bd7503868fc506b84765ce59cce65828d613147c0ee05241bdf9b
MD5 03956e4c07d7486d7b8d381b61e2ce63
BLAKE2b-256 374e84cf276bf3fa0c9c9278546bb5c83e8d8b21069c460a54519926d7e66a20

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7ba988719adb424caa786be318dfdbf1c44b066368f6eee99cf2f424b5f25091
MD5 745b035d5e088738c7177a6a2468fb2e
BLAKE2b-256 c12782b99281023160bdfd857bd101fc1bfa7d539b68def24415e7a1c4ed5998

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 28b8901b615a548c8ade2662e9051de9420c34a2d1a8c91d2ba11edb0c3db14f
MD5 4db8335d5d7a44908acf2e052e04537f
BLAKE2b-256 079850a1c004640daf11f3e5a96b47a5b96c101f2db127f2e8300d852e3bdba3

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 61e1d186f066507a230ca27e24eaeb051a901b3c5293c2c155f08f534a19d248
MD5 fff8afa6455ae5b2b7019de55800fde8
BLAKE2b-256 36e0823eef87aa20975296fae42f2f611f95f8078df90722454439d1232185db

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 58b29fc5fa20c7cdd6cd8261f39fedaffd03061601c1624b33a80bdfb29a6844
MD5 fa6c3b78c038f636f90dbf7fe1aa079e
BLAKE2b-256 f0d783c56549ea90d8b211fde154df4f44f822c06e3bd8a54a82a7ca0aa1cc5f

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.12.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 262.9 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.12.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 eff6627db77d1b6865accafdd7068e577d68c1de296f31987dfc945e5dc64aec
MD5 0dc48f3e4a5d2d0ff029531ea1ff39e6
BLAKE2b-256 1b9e2cd40f80c6cebd867f4aacdb69127cafe15c9e3068e3a95fa2c7bae3ede2

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.12.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.12.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8c7e2c1d5ca2ed0ada93484cced017607b802b334936c44158ce66a1cb0f15ab
MD5 2649c60923e39579dd04c6187fbc0ce2
BLAKE2b-256 b619f3571a1bd024cd20960c3fa2fe651d9123024268eeea11eced9ce804cc8a

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a9fd31a99a989f463574ec6c029f066a7b39810b1849c0c30c6d5e860bbf383a
MD5 06a44d104c3011d5e4b9f0b1cbe85a1d
BLAKE2b-256 33e4c05e469447a65055293485a840025b3e62b457c49213ed98b0577dc1bc49

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 78f75e35aca2a1d085fc3f750dc4cde68cf8dcc79fdeff326abb0fc4c58f7674
MD5 0ea64b1a7d1bd141339965104d074f1a
BLAKE2b-256 f97a7d2a09fac3f72200ee4135b34bb6409584fb358a10936d738a57271b9b26

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6098c4c0feae641195dc5f36d7f8009712ca4048a0e2472a39d0c8415b1c3ea8
MD5 90bbfc0c9dfd4b85b302e9fcda8ddbfd
BLAKE2b-256 83ced66131b9e63ddc32ddba0fc558f80854543c3d67429663d9e36ec8433a38

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 eacbced5348a4703b93be9fc16cec826dfb782fb73924f3e6e6db60db7f6677d
MD5 42efffbb2495e94fcf6074de80864f17
BLAKE2b-256 bea2a0da05944429e16cdc722f4cd40d98201ab0451399112de7439e8d05f2bf

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 562a25fa49ed31f88d5798086c6b603952dd27146f3d1ac879cf0e15a3645656
MD5 70be7a222d22b4d5910f76a8bfef25d6
BLAKE2b-256 f00dd21c9422564a090187458855282f28e8b7eed30625f78f88f4927ed577e7

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f144ea6b9baf4af2358f6a0425d3ea7be79b77a0b97cf236879104fd37dce9d7
MD5 be91e4ff18df100da031300eaa39d67c
BLAKE2b-256 11febfbca7d73e9d2b6de2da53919bc06f99fa109eb8d74b20fcf7033d582e65

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b1ec392af176dfcdbd03bb30db2b0eddab10a3d4a789994fe71c678556df50f2
MD5 0cfb6b8b2f44aa164e37f2c0c9ba60f7
BLAKE2b-256 99a5e96a28f32933664aef17f713d8927c8202b2aa351ddda4d681a35d09ceed

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.12.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 278.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.12.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 26d001d0804bb1051b8eff16f1398cbf728ec23cacdf8d1476cf43e5b00665be
MD5 8e2f4e5aac723197a7999d27dab9360a
BLAKE2b-256 82a3d3ddde064fa332178084989683e0351ab6648df30c93df5d7b465a4877df

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 44e0a7f103e6949eaf588018d1876b4adc563c819a0f7a97876dec4c1b4c3aa6
MD5 a250c64db729f5804940d07421955ef3
BLAKE2b-256 3adcfe4a8eacf1b8dab8be935afbb7ee847c61defb17516b4c1cb74b4d04e15c

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ab89351fa1104456948b5052bec752fbda4747bc01c25b90991005053834a7ab
MD5 654cefcdae6457ecd52959cebb5b84bb
BLAKE2b-256 cb05e11185d691a675af2ad446e94bd36120c6b79a43a34dee8431ba5ca043f9

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e8a948a7f273054469a59f914140de705ad0bfdd41a4f21deba4d30d847191d1
MD5 c4a97f321fa3a41d38821d894c4ac0d8
BLAKE2b-256 b4d3b51d96bc8cf812f01abeaa11bd541096aa5690f03b794aa37cbfc92aaab0

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6d95995accefffd2a6db83ebb25ac47bb149a4df487f197d14559b79801ba2c1
MD5 c8586d947dc09a602a49c6347d93497a
BLAKE2b-256 eb0614233d3ea2b21b1e35599e6e80b0814152152b61d0b3b44a844b0f842d03

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e1833fd5dcaa545892d217876c73f20ca209ae9a2dd30ba8d381cbff95bf689c
MD5 05d0aa496403aadc1ab3c2b03eb4a31e
BLAKE2b-256 d892878b7f64d94f009527ac1d168bc9c54aa80fa3267f1a0081fe4d0c4b1621

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aaaeef87c7dad25053fc88866f5e48eea414e4937328027e8f74141f9c644a1e
MD5 aa33c53ea6bcad51b11662217a7ecb48
BLAKE2b-256 a070da0d7af5b182af800e303fc5440eed070ad7625b2a9b42b68769f91cfdb6

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5fca77f8e2b506830f8203b48bb1e3fefe9fa46bf57c8047ae30ffd17c13697c
MD5 cf00f231e62e6c378fa4a1b56dbf0767
BLAKE2b-256 186396fbe4dadef94701e61aebb89030fbb8cbeffc1881016dead65b448c3852

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.12.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.12.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b4661fc61a0cb6516cd985d4fcab9a513d330f761b08c3fcdd5f8da810aa6bf2
MD5 62b083790c67475c54219ad80bc8531b
BLAKE2b-256 0e1278f4844a7e73679276467abc5ba07906aa152e9b33401ea21c7cea8e131e

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f833ad91f4369eae0cce29ef1d6d3ddcea013243c28032ce5051c55c2ee326f7
MD5 9b683f0bba4db05678bbf38cacff27ab
BLAKE2b-256 cc3a8b7aa13df511c0fd452dac27f4da79f0783c1ed6c6098b9f07f7b5ba207f

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4776973f3c3a7aa387ef070e1d50e438a021202d7b0b85600eb0444c79d60c2e
MD5 0ef5dbf3ea546c1b21b70d774ecbe98f
BLAKE2b-256 60b96fa113a4b535d8451e09b3011b78452df645aab52cee596e0150a9efad87

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b6f5b990c2c09d5d02d1125e610aae1cefeeb58bcd8e7a2f9877c00948ce0765
MD5 b326f29c85f655f87f7ec00c912ea2e3
BLAKE2b-256 9c64fface9bb81a9abe24cc251fec15ab952abce0a877a29301ff5fd846abe35

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a90d20929fdc925a9083beb8a4cfdc00f6dac2675be460c83c91b59e5cc731b2
MD5 193393feb215ca914885ad58e5a98fbf
BLAKE2b-256 87464238909f1422f1aaeda0375f333bb0b7e08d5e75c844e0a05970a68039af

See more details on using hashes here.

File details

Details for the file usearch-2.12.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.12.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 130d4bef17b44027061e4c66e745c411d71bc27760e0f269afc8dad3f5d364f9
MD5 028a2d3432cb1d6ca34253c814d2c47d
BLAKE2b-256 78761775245ded37bc1f8b21bbb0773544ba8843acda20b3b09a741b1446cf3d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page